def runMutationdevelopment_independentPopulations(self, N, r, d, K, b1, b2, m): bValues = np.zeros((15000,3)) time = 1 resultPosition = 0 population1 = Population(m, mutationON=False) population1.addIndividual(r, d, N, b1, K, resident=True) population2 = Population(m, mutationON=False) population2.addIndividual(r, d, N, b2, K, resident=True) while time <= 30000: population1.updatePopulation(1) population2.updatePopulation(1) if time % 100 == 1: bValues[resultPosition] = [time, population1.getAverageB(), population2.getAverageB()] resultPosition += 1 time += 1 population1.mutationON = True population2.mutationON = True while time <= 150000: population1.updatePopulation(1) population2.updatePopulation(1) if time % 100 == 1: bValues[resultPosition] = [time, population1.getAverageB(), population2.getAverageB()] resultPosition += 1 time += 1 return bValues
def runMutationdevelopment_coexistingCommunity(self, N, r, d, K, b1, b2, m): bValues = np.zeros((15000,3)) time = 1 resultPosition = 0 population = Population(m, mutationON=False) population.addIndividual(r, d, N, b1, K, resident=True) population.addIndividual(r, d, N, b2, K, resident=False) while time <= 30000: population.updatePopulation(1) if time % 100 == 1: bValues[resultPosition]= [time, population.getResidentAverageB(),population.getInvaderAverageB()] resultPosition += 1 time += 1 population.mutationON = True while time <= 150000: population.updatePopulation(1) if time % 100 == 1: bValues[resultPosition] = [time, population.getResidentAverageB(),population.getInvaderAverageB()] resultPosition += 1 time += 1 return bValues