예제 #1
0
def MagXCompPlot(pkl1, pkl2):
    pklfrep1 = pklrep + pkl1
    pklfrep2 = pklrep + pkl2
    #initially going to hardcode for intensity or magnitude
    MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename = RetrieveVars(
        pklfrep1)
    MagX1 = MagXarr  #/max(MagXarr) #since cross and co polar are mixed up

    plt.figure(facecolor='xkcd:pale green')
    plt.subplot(221, facecolor='#d8dcd6')
    plt.scatter(PixCenX * 1000,
                PixCenY * 1000,
                c=MagX1,
                cmap='jet',
                marker='s',
                s=5)
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("FP - {}".format(pkl1), fontsize=10)

    plt.subplot(222, facecolor='#d8dcd6')
    MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename = RetrieveVars(
        pklfrep2)
    MagX2 = MagYarr  #/max(MagYarr)
    plt.scatter(PixCenX * 1000,
                PixCenY * 1000,
                c=MagX2,
                cmap='jet',
                marker='s',
                s=5)
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("FP - {}".format(pkl2), fontsize=10)

    plt.subplot(223, facecolor='#d8dcd6')
    comp = (MagX1 - MagX2) / MagX1 * 100
    analysisarray = ([])
    #okay so here i am finding all of the outer pixels and setting to zero
    #this allows me to analyse valid pixels between grasp and modal
    #maybe i should delete these elements of the array to make data analysis easier
    for i in range(len(PixCenX)):
        if np.sqrt(PixCenX[i]**2 + PixCenY[i]**2) > 0.05:
            comp[i] = np.mean(comp)
            PixCenX[i] = 0.05
            PixCenY[i] = 0.05
        else:
            analysisarray = np.append(comp[i], analysisarray)
            #print "radius test", np.sqrt(PixCenX[i]**2 + PixCenY[i]**2)
            #plt.scatter(PixCenX[i]*1000,PixCenY[i]*1000, c=comp[i], cmap='jet',marker='s')

    plt.scatter(PixCenX * 1000,
                PixCenY * 1000,
                c=comp,
                cmap='jet',
                marker='s',
                s=5)
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("Data Comparison", fontsize=10)

    plt.subplot(224, facecolor='#d8dcd6')
    #do histogram here
    #binarr = [-0.35, -0.25, -0.15, -0.05, 0.05, 0.015]
    #binarr = [-0.325, -0.275, -0.225, -0.175, -0.125, -0.075, -0.025, 0.025, 0.075, 0.125]
    #binarr = [-32.5, -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5]
    #binarr = [0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25]

    analysisarray = np.abs(analysisarray)
    #analysisarray = analysisarray[~np.isnan(analysisarray)]
    print("analysis info, max, length, mean ", np.max(analysisarray),
          len(analysisarray), np.mean(analysisarray))
    n, bins, patches = plt.hist(analysisarray)
    print("hist data ", n, bins, patches)

    plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)
    cax = plt.axes([0.85, 0.1, 0.05, 0.8])
    plt.colorbar(cax=cax, label="% Difference Comparison")
    plt.show()

    return
예제 #2
0
def FPComparisonPlotRAW(pkl1, pkl2):
    #initially going to hardcode for intensity or magnitude
    MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename, freq = RetrieveVars(
        pkl1)
    IntX1 = IT / max(IT)  # cx and co mixed
    print("pkl1 max intensity ", max(IT))

    plt.figure(facecolor='xkcd:pale green')
    plt.subplot(221, facecolor='#d8dcd6')
    plt.scatter(xycoords[:, 1] * 1000,
                xycoords[:, 0] * 1000,
                c=IntX1,
                cmap='jet',
                marker='s')
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("pkl1", fontsize=10)

    #delete vars
    del MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename, freq
    MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename, freq = RetrieveVars(
        pkl2)
    IntX2 = IT / max(IT)  # norm to first plot
    print("pkl2 max intensity ", max(IT))
    plt.subplot(222, facecolor='#d8dcd6')
    plt.scatter(xycoords[:, 0] * 1000,
                xycoords[:, 1] * 1000,
                c=IntX2,
                cmap='jet',
                marker='s')
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("pkl2", fontsize=10)
    #initialise comparison array and plot
    #IntX1[IntX1 == 0] = min(IntX1)
    #IntX2[IntX2 == 0] = min(IntX1)
    comp = ((IntX1 - IntX2) / IntX1) * 100

    plt.subplot(223, facecolor='#d8dcd6')
    plt.scatter(xycoords[:, 0] * 1000,
                xycoords[:, 1] * 1000,
                c=comp,
                cmap='RdYlGn',
                marker='s')  #RdPu, 	YlGnBu
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("Data Comparison", fontsize=10)
    #Now do histogram
    plt.subplot(224, facecolor='#d8dcd6')
    print("analysis info, max, length, mean ", np.max(comp), len(comp),
          np.mean(comp))
    n, bins, patches = plt.hist(comp)
    print("hist data ", n, bins, patches)
    #Set colorbar
    plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)
    cax = plt.axes([0.85, 0.1, 0.05, 0.8])
    plt.colorbar(cax=cax, label="Model % Diff Comparison")
    plt.show()

    return
예제 #3
0
def IntensityXPlot(plotfname):
    pklrep = '/home/james/files4CSFPA/qbdataioOUTFILES/' + plotfname
    ######################IntensityX plot
    MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename = RetrieveVars(
        pklrep)

    plt.figure(facecolor='xkcd:pale green')
    plt.subplot(121, facecolor='#d8dcd6')  #xkcd reference for this colour
    plt.scatter(PixCenX,
                PixCenY,
                c=IntX / max(IntX),
                s=25,
                cmap='jet',
                marker='s')
    plt.axis([-0.06, 0.06, -0.06, 0.06])
    plt.axis('equal')
    plt.title("{} as Bolometers Intensity X dir".format(plotfname),
              fontsize=10)

    plt.subplot(122, facecolor='#d8dcd6')  #xkcd reference for this colour
    plt.scatter(xycoords[:, 0],
                xycoords[:, 1],
                c=Ix / max(Ix),
                cmap='jet',
                marker='.')
    plt.axis([-0.06, 0.06, -0.06, 0.06])
    plt.axis('equal')
    plt.title("{}".format(plotfname), fontsize=10)
    plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)
    cax = plt.axes([0.85, 0.1, 0.05, 0.8])
    plt.colorbar(cax=cax, label="Intensity X")
    plt.show()

    return
예제 #4
0
def PhaYCompPlot(pkl1, pkl2):
    #initially going to hardcode for intensity or magnitude
    #Is this a Pha Y plot?
    MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename = RetrieveVars(
        pkl1)
    PhaY1 = PhaYarr / max(PhaYarr)  # cross and co polar mixed up

    plt.figure(facecolor='xkcd:pale green')
    plt.subplot(221, facecolor='#d8dcd6')
    plt.scatter(PixCenX * 1000,
                PixCenY * 1000,
                c=PhaY1,
                cmap='jet',
                marker='s',
                s=5)
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("FP - {}".format(pkl1), fontsize=10)

    plt.subplot(222, facecolor='#d8dcd6')
    MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename = RetrieveVars(
        pkl2)
    PhaY2 = PhaYarr / max(PhaYarr)
    plt.scatter(PixCenX * 1000,
                PixCenY * 1000,
                c=PhaY2,
                cmap='jet',
                marker='s',
                s=5)
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("FP - {}".format(pkl2), fontsize=10)

    plt.subplot(223, facecolor='#d8dcd6')
    PhaY1[PhaY1 == 0] = 0.000001
    PhaY2[PhaY2 == 0] = 0.000001
    comp = PhaY1 / PhaY2

    analysisarray = ([])
    #okay so here i am finding all of the outer pixels and setting to zero
    #this allows me to analyse valid pixels between grasp and modal
    #maybe i should delete these elements of the array to make data analysis easier
    for i in range(len(PixCenX)):
        if np.sqrt(PixCenX[i]**2 + PixCenY[i]**2) > 0.05:
            comp[i] = 0
            PixCenX[i] = 0.05
            PixCenY[i] = 0.05
        else:
            analysisarray = np.append(comp[i], analysisarray)
            #print "radius test", np.sqrt(PixCenX[i]**2 + PixCenY[i]**2)
            #plt.scatter(PixCenX[i]*1000,PixCenY[i]*1000, c=comp[i], cmap='jet',marker='s')

    plt.scatter(PixCenX * 1000,
                PixCenY * 1000,
                c=comp,
                cmap='jet',
                marker='s',
                s=5)
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("Data Comparison", fontsize=10)

    plt.subplot(224, facecolor='#d8dcd6')
    #analysisarray = np.abs(analysisarray)
    analysisarray = analysisarray[~np.isnan(analysisarray)]
    #print "analysis info, max, length, mean", np.max(analysisarray), len(analysisarray), np.mean(analysisarray)
    binarr = [-3, -2, -1, 0, 1, 2, 3]
    n, bins, patches = plt.hist(analysisarray, bins=binarr)
    print("hist data ", n, bins, patches)

    plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)
    cax = plt.axes([0.85, 0.1, 0.05, 0.8])
    plt.colorbar(cax=cax, label="% Difference Comparison")
    plt.show()

    return
예제 #5
0
def PhaYPlot():
    MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename = RetrieveVars(
    )
    #load raw data from file
    dataCF = np.loadtxt(filename, skiprows=1)
    ############################### plot normalised data ################
    plt.figure()
    plt.subplot(121)
    plt.scatter(PixCenX * 1000,
                PixCenY * 1000,
                c=PhaYarr / max(PhaYarr),
                cmap='plasma',
                marker='s')
    plt.axis([-0.06, 0.06, -0.06, 0.06])
    plt.axis('equal')
    plt.title("Phase Y CF Source as Bolometers", fontsize=10)
    plt.subplot(122)
    plt.scatter(xycoords[:, 0],
                xycoords[:, 1],
                c=dataCF[:, 7] / (max(dataCF[:, 7])),
                cmap='plasma',
                marker='.')
    plt.axis([-0.06, 0.06, -0.06, 0.06])
    plt.axis('equal')
    plt.title("Phase Y CF Source - MODAL", fontsize=10)
    plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)
    cax = plt.axes([0.85, 0.1, 0.05, 0.8])
    plt.colorbar(cax=cax, label="Phase Y")
    plt.show()

    return
예제 #6
0
def TotIntCompPlot(pkl1, pkl2):
    #initially going to hardcode for intensity or magnitude
    MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename = RetrieveVars(
        pkl1)
    IntT1 = IntT / max(IntT)

    plt.figure(facecolor='xkcd:pale green')
    plt.subplot(221, facecolor='#d8dcd6')
    plt.scatter(PixCenX * 1000,
                PixCenY * 1000,
                c=IntT1,
                cmap='jet',
                marker='s',
                s=5)
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("FP - {}".format(pkl1), fontsize=10)

    plt.subplot(222, facecolor='#d8dcd6')
    MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename = RetrieveVars(
        pkl2)
    IntT2 = IntT / max(IntT)  #Normalise to first files peak
    plt.scatter(PixCenX * 1000,
                PixCenY * 1000,
                c=IntT2,
                cmap='jet',
                marker='s',
                s=5)
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("FP - {}".format(pkl2), fontsize=10)

    plt.subplot(223, facecolor='#d8dcd6')

    IntT1[IntT1 == 0] = 0.000001
    IntT2[IntT2 == 0] = 0.000001
    comp = ((IntT1 - IntT2) / IntT1) * 100  #can delete this % conversion
    analysisarray = ([])
    #okay so here i am finding all of the outer pixels and setting to zero
    #this allows me to analyse valid pixels between grasp and modal
    #maybe i should delete these elements of the array to make data analysis easier
    for i in range(len(PixCenX)):
        if np.sqrt(PixCenX[i]**2 + PixCenY[i]**2) > 0.05:
            comp[i] = np.mean(comp)
            PixCenX[i] = 0.05
            PixCenY[i] = 0.05
        else:
            analysisarray = np.append(comp[i], analysisarray)
            #print "radius test", np.sqrt(PixCenX[i]**2 + PixCenY[i]**2)
            #plt.scatter(PixCenX[i]*1000,PixCenY[i]*1000, c=comp[i], cmap='jet',marker='s')

    plt.scatter(PixCenX * 1000,
                PixCenY * 1000,
                c=comp,
                cmap='RdPu',
                marker='s',
                s=5)
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("Data Comparison", fontsize=10)

    plt.subplot(224, facecolor='#d8dcd6')
    #do histogram here
    #binarr = [-0.35, -0.25, -0.15, -0.05, 0.05, 0.015]
    #binarr = [-0.325, -0.275, -0.225, -0.175, -0.125, -0.075, -0.025, 0.025, 0.075, 0.125]
    #binarr = [-32.5, -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5]
    #binarr = [0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25]
    #binarr = [0, 1, 2, 3, 4, 5, 6, 7, 8]
    #comp = np.abs(comp)
    #analysisarray = np.abs(analysisarray)
    print("analysis info, max, length, mean ", np.max(analysisarray),
          len(analysisarray), np.mean(analysisarray))
    n, bins, patches = plt.hist(analysisarray)
    print("hist data ", n, bins, patches)

    plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)
    cax = plt.axes([0.85, 0.1, 0.05, 0.8])
    plt.colorbar(cax=cax, label="% Difference Comparison - Total Intensity")
    plt.show()

    return
예제 #7
0
def MagXPlot(plotfname):
    #load saved variables
    MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename = RetrieveVars(
        plotfname)
    #load raw data from file
    dataCF = np.loadtxt(filename, skiprows=1)
    plt.figure(facecolor='xkcd:pale green')
    plt.subplot(121, facecolor='#d8dcd6')
    plt.scatter(PixCenX,
                PixCenY,
                c=MagXarr / max(MagXarr),
                s=25,
                cmap='jet',
                marker='s')
    plt.axis([-0.055, 0.055, -0.055, 0.055])
    plt.axis('equal')
    plt.title("{} as Bolometers".format(plotfname), fontsize=10)
    #plt.plot(0, 0, 'o', mfc='none',markersize=57.16*2,color='black')
    plt.subplot(122, facecolor='#d8dcd6')
    plt.scatter(xycoords[:, 0],
                xycoords[:, 1],
                c=dataCF[:, 4] / (max(dataCF[:, 4])),
                cmap='jet',
                marker='.')
    #plt.scatter(xycoords[:,0],xycoords[:,1], c=MagXarr/(max(MagXarr)), cmap='plasma',marker='.')
    #plt.plot(0, 0, 'o', mfc='none',markersize=57.16*2,color='black')
    plt.axis([-0.055, 0.055, -0.055, 0.055])
    plt.axis('equal')
    plt.title("Source - {}".format(filename), fontsize=10)
    plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)
    cax = plt.axes([0.85, 0.1, 0.05, 0.8])
    plt.colorbar(cax=cax, label="Mag X")
    plt.show()

    return
def TotalIntensityPlot():
    MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename = RetrieveVars(
    )
    ######################Total Intensity plot - Normalised

    plt.figure()
    plt.subplot(121)
    plt.scatter(PixCenX * 1000,
                PixCenY * 1000,
                c=IntT[:] / max(IntT[:]),
                cmap='plasma',
                marker='s')
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("CF1 Source as Bolometers Total Instensity", fontsize=10)
    plt.subplot(122)
    plt.scatter(xycoords[:, 0],
                xycoords[:, 1],
                c=IT[:] / max(IT[:]),
                cmap='plasma',
                marker='.')
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("CF1 Source - MODAL", fontsize=10)
    plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)
    cax = plt.axes([0.85, 0.1, 0.05, 0.8])
    plt.colorbar(cax=cax, label="Intensity")
    plt.show()
    os.system('spd-say "BING! BING! BING!"')
    return
def IntensityXPlot():
    ######################IntensityX plot
    MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename = RetrieveVars(
    )

    plt.figure()
    plt.subplot(121)
    plt.scatter(PixCenX * 1000,
                PixCenY * 1000,
                c=IntX / max(IntX),
                s=8,
                cmap='plasma',
                marker='s')
    plt.axis([-0.06, 0.06, -0.06, 0.06])
    plt.axis('equal')
    plt.title("CF1 Source as Bolometers Intensity X dir", fontsize=10)
    plt.subplot(122)
    plt.scatter(xycoords[:, 0],
                xycoords[:, 1],
                c=Ix / max(Ix),
                cmap='plasma',
                marker='.')
    plt.axis([-0.06, 0.06, -0.06, 0.06])
    plt.axis('equal')
    plt.title("CF1 Source - MODAL", fontsize=10)
    plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)
    cax = plt.axes([0.85, 0.1, 0.05, 0.8])
    plt.colorbar(cax=cax, label="Intensity X")
    plt.show()

    return
예제 #10
0
def PoynICompPlot(mpath, gpath):
    #prep MODAL data
    df = pd.read_csv(mpath, sep='\t', header=0)
    garea, parea = GetMODALGridPixArea(mpath)
    #prep GRASP
    MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename = RetrieveVars(
        gpath)
    gfile = os.path.basename(gpath)
    GPow = GridPowerCalc(gfile)
    #calculate %diff
    comp = ((abs(df.PoynZ * parea) - abs(GPow)) / abs(GPow)) * 100
    #comp = np.isclose(GPow, df.PoynZ*parea, atol=1e-6)
    fourpi = 4 * np.pi
    #do multi plots
    fig = plt.figure(facecolor='xkcd:pale green')
    fig.suptitle("FP Comparison")

    ax1 = fig.add_subplot(221, facecolor='#d8dcd6', aspect='equal')
    ax1.set_title("MODAL FP from Poynting Z")
    sc = ax1.scatter(df.X, df.Y, c=df.PoynZ * parea, cmap='jet', marker='.')
    cbar = fig.colorbar(sc, label="MODAL Poynting (W)")

    ax2 = fig.add_subplot(222, facecolor='#d8dcd6', aspect='equal')
    ax2.set_title("GRASP FP from Total Intensity")
    sc = ax2.scatter(xycoords[:, 1] * 1000,
                     xycoords[:, 0] * 1000,
                     c=GPow,
                     cmap='jet',
                     marker='.')
    cbar = fig.colorbar(sc, label="GRASP Total Intensity (W)")
    #plot %diff between models
    ax3 = fig.add_subplot(223, facecolor='#d8dcd6', aspect='equal')
    ax3.set_title("Difference between Softwares")
    sc = ax3.scatter(xycoords[:, 1] * 1000,
                     xycoords[:, 0] * 1000,
                     c=comp,
                     cmap='RdPu',
                     marker='.')  #Both useful PiYG & RdPu
    cbar = fig.colorbar(sc, label="Difference")
    #plot histogram of %diff per pixel
    ax4 = fig.add_subplot(224, facecolor='#d8dcd6')
    ax4.set_title("% Difference Histogram")
    n, bins, patches = ax4.hist(comp)
    print "hist data", n, bins, patches
    #calcualte sum of power
    print "Poynting Sum W = ", sum(
        df.PoynZ *
        parea), "% Diff from 1 W = ", ((sum(df.PoynZ * parea) - 1) / 1) * 100
    print "modal values: max, mean ", max(df.PoynZ * parea), np.mean(df.PoynZ *
                                                                     parea)
    print "grasp values: max, mean ", max(GPow), np.mean(GPow)
    return
예제 #11
0
def TotalIntensityPlot(plotfname):
    pklrep = '/home/james/files4CSFPA/qbdataioOUTFILES/' + plotfname
    MagXarr, PhaXarr, ReXarr, ImXarr, MagYarr, PhaYarr, ReYarr, ImYarr, vtxcntarr, PixCenX, PixCenY, IntX, IntY, IntT, Ix, Iy, IT, xycoords, filename = RetrieveVars(
        pklrep)
    ######################Total Intensity plot - Normalised

    TESPower = TESPowerCalc(plotfname)
    GPow = GridPowerCalc(plotfname)

    plt.figure()
    plt.subplot(121)
    plt.scatter(PixCenX * 1000,
                PixCenY * 1000,
                c=TESPower,
                cmap='jet',
                marker='s')
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("Bolometers Total Intensity", fontsize=10)
    plt.subplot(122)
    plt.scatter(xycoords[:, 1],
                xycoords[:, 0],
                c=GPow,
                cmap='jet',
                marker='.',
                s=1)
    plt.axis([-60, 60, -60, 60])
    plt.axis('equal')
    plt.title("Model Power Data", fontsize=10)
    plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)
    cax = plt.axes([0.85, 0.1, 0.05, 0.8])
    plt.colorbar(cax=cax, label="Intensity (1 W Source)")
    plt.show()
    os.system('spd-say "BING! BING! BING!"')
    return