def compare(args): print "Inside compare with args:" print 'First: {0}'.format(args.first) print 'Second: {0}'.format(args.second) compr = Comparator(args.first, args.second) return compr.compare() pass
def compare(): t0 = time.clock() print("Beginning comparison...") comparator = Comparator("/home/arts/Documents/originalReads", "/home/arts/Documents/alignedReads", "/home/arts/Documents/correctedReads.gz", "/home/arts/Documents/failedToAlignReads", "/home/arts/Documents/report") comparator.compare() print("Comparison finished. Took: %s." % (time.clock() - t0)) return None
def runGenerator(args): generator = Generator(args.n, args.l, args.d) profiles = generator.generate_profiles() comparator = Comparator(profiles) print 'Prim:' print comparator.goeBURST('prim') print 'Kruskal:' print comparator.goeBURST('kruskal')
def main(): start_state = State([ 0, 2, 3, 4, 6, 1, 7, 5, 8 ]) goal_state = State([ 1, 2, 3, 4, 5, 6, 7, 8, 0 ]) comparator = Comparator(goal_state) start = time.time() result = ids(start_state, goal_state) # result = a_star(start_state, goal_state, comparator) end = time.time() totaltime = end - start if result is None: print("No solution found") elif result == []: print("Start node was the goal!") else: print("The number of nodes visited", result.get("number_of_nodes_visited")) print("Max number of nodes stored in memory:", result.get("max_number_of_nodes")) print("including:") print(" ", result.get('number_of_explored'), "explored nodes") print(" ", result.get('number_of_nodes'), "nodes that have to be explored") print(f"Number of moves: {len(result.get('path_from_start'))}") print("States of moves are as follows:", result.get("path_from_start")) print(f"Total searching time: {round(totaltime, 5)} seconds")
def run(self): futils = FileUtils(filename="./data/normalized_training_data_2.csv", skip_header=True, whitespace_delim=True) comp = Comparator(reference_dict=futils.get_arrays_from_csv(), start_comparison_col=2) predictions = [] test_file = FileUtils(filename="./data/normalized_test_data_2.csv", skip_header=True, whitespace_delim=True) for test_record in test_file.get_arrays_from_csv(): match = comp.get_closes_match(test_record) print("Closes match for {0} is {1}".format(test_record, match)) predictions.append("{0},{1}".format(int(test_record[0]), int(match[1]))) for p in predictions: print(p)
def Solve(self, problem): print("Starting Solver for problem %s\n" % problem.name) processor = VisualProcessor(problem.figures, problem.problemType) compare = Comparator(processor) compare.CreateGraphNodes() proposedAnswers = compare.GetSolutions() if proposedAnswers == None or len(proposedAnswers) <= 0: return -1 answers = [] for answer in proposedAnswers: ans = proposedAnswers[answer][0] val = proposedAnswers[answer][1] print "\tAnswer for " + answer + " method: [" + str( ans) + ", " + str(val) + "]" answers.append(proposedAnswers[answer][0]) answerCounts = [] for i in range(0, processor.numAnswers): answerCounts.append(answers.count(i)) #solver.OutputImageCombinations(problem.name) if np.all(np.array(answerCounts) <= 1): return -1 maxCounts = np.max(answerCounts) indexes = np.argwhere(answerCounts == maxCounts) indexes = list(indexes.flatten()) if len(indexes) > 1: return -1 #bestAns = -1 #bestDist = float('inf') #for answer in proposedAnswers: # for i in indexes: # if proposedAnswers[answer][0]==i and proposedAnswers[answer][1] < bestDist: # bestDist = proposedAnswers[answer][1] # bestAns = proposedAnswers[answer][0] #agreedAnswer = bestAns else: agreedAnswer = indexes[0] return agreedAnswer + 1
def test_best_match_non_trivial(self): a = [[870, 1, 3, 0.134684136, 1, 1, 0.021730754, 0], [871, 0, 3, 0.875446884, 0, 0, 0.015411575, 0], [872, 1, 1, 1.582538598, 1, 1, 0.102578967, 0], [873, 0, 1, 1.111144122, 0, 0, 0.00975935, 0], [874, 0, 3, 1.582538598, 0, 0, 0.01756683, 0], [875, 1, 2, 0.942788952, 1, 0, 0.04684488, 1], [876, 1, 3, 0.50506551, 0, 0, 0.014102261, 1], [877, 0, 3, 0.67342068, 0, 0, 0.019217722, 0], [878, 0, 3, 0.639749646, 0, 0, 0.015411575, 0]] comp = Comparator(a, 2) a1 = comp.get_closes_match( [0, 0, 1, 1.582538598, 1, 1, 0.102578967, 0]) print("Match ID: {0}".format(int(a1[0]))) self.assertTrue(int(a1[0]) == 872) a2 = comp.get_closes_match([0, 0, 3, 0.50506559, 0, 0, 0.014102261, 1]) print("Match ID: {0}".format(int(a2[0]))) self.assertTrue(int(a2[0]) == 876)
def __init__(self, algorithm, stop_event, options, compare=None): self.stopEvent = stop_event self.numLines = options.numLines self.width = options.width self.compare = compare self.stop = False self.cstop = compare == None self.items = Orderable(self.numLines) self.cmp = Comparator(self.items) self.markers = Markers() algorithm.initialize(self.cmp, self.items, self.markers) self.gen = algorithm.sort() if compare != None: self.citems = copy.deepcopy(self.items) self.ccmp = Comparator(self.citems) self.cmarkers = Markers() compare.initialize(self.ccmp, self.citems, self.cmarkers) self.cgen = compare.sort() pygame.init() if compare == None: self.window = pygame.display.set_mode( (self.width, 6 * (self.numLines + 1))) else: self.window = pygame.display.set_mode( (self.width * 2 + 5, 6 * (self.numLines + 1))) self.i = 0 self.update()
def test_001_t(self): """ Defined source data for three incoming port For one port src_data0 For N port src_data0,src_data1,src_data2,.......,src_dataN. """ src_data0 = (10, 9, 15) expected_result = (20, 20, 20) src0 = gr.vector_source_f(src_data0) cam_ref = Comparator(2, 20, 4) dst = gr.vector_sink_f() self.tb.connect(src0, cam_ref) self.tb.connect(cam_ref, dst) self.tb.run() result_data = dst.data() print "Result data is : ", result_data self.assertFloatTuplesAlmostEqual(expected_result, result_data, 6)
def __init__(self, algorithm, stop_event, options): self.stopEvent = stop_event self.numLines = options.numLines self.width = options.width self.items = Orderable(self.numLines) self.cmp = Comparator(self.items) self.markers = Markers() algorithm.initialize(self.cmp, self.items, self.markers) self.gen = algorithm.sort() pygame.init() self.window = pygame.display.set_mode( (self.width, 6 * (self.numLines + 1))) self.i = 0 self.update()
from Mesh import Mesh from Shape import Circle from Comparator import Comparator import matplotlib.pyplot as plt base = Mesh( '/home/tristan/box/adcirc/runs/scaled20-noutgs/200' ) comp = Mesh( '/home/tristan/box/adcirc/runs/scaled20-noutgs/3200' ) circle = Circle( -77.9199990000, 33.8721240000, 0.05 ) comparator = Comparator( base, comp, circle ) comparator.compare_meshes() rmse = comparator.compare_elevation_timeseries() # with open( '/home/tristan/box/adcirc/runs/scaled20-noutgs/rmse.txt', 'w' ) as f: # # for ( x, y ), e in rmse.items(): # # f.write( str( x ) + ',' + str( y ) + ',' + str( e ) + '\n' ) xvals = [] yvals = [] evals = [] for ( x, y ), e in rmse.items(): xvals.append( x ) yvals.append( y ) evals.append( e ) # print( x, y, e )
def test_record_size_mismatch(self): c = Comparator("blah", 1) self.assertRaises(Exception, c.compute_error, [1, 2, 3, 4], [1, 2, 3, 4, 5]) self.assertRaises(Exception, c.compute_error, [1, 2, 3, 4, 5], [1, 2, 3, 4])
def btnStartPars(file1, file2): dict = FileWorkClass.ReadFile(file1) d = sorted(dict.items(), key=cmp_to_key(Comparator.make_comparator(Comparator.cmpValue)), reverse=False) FileWorkClass.WriteFile(file2, d)
def test_compute_error(self): c = Comparator([[]], 1) err = c.compute_error([1, 2, 3, 4], [1, 2, 3, 4]) print("ERROR: {0}".format(err)) self.assertTrue(err == 0.0)
def test_get_best_match(self): fu = FileUtils(filename="test_file.csv", skip_header=True) reference_rows = fu.get_arrays_from_csv() comp = Comparator(reference_rows, 1) match = comp.get_closes_match([1, 10.0, 20.0, 30.0]) self.assertTrue(match[0] == 3.0)
from Generator import Generator if __name__ == '__main__': s1 = Searcher(CONSTS.O_DIR1) s2 = Searcher(CONSTS.D_DIR1) orig_files = s1.search() dev_files = s2.search() for f1 in orig_files: f2 = [item for item in dev_files if item['filename'] == f1['filename']] if len(f2) <= 0: continue f2 = f2[0] c = Comparator( "%s/%s" % (f1['dir'], f1['filename']), "%s/%s" % (f2['dir'], f2['filename']) ) c.compare() modified = c.get_modified_method() if len(modified) <= 0: continue #print f1['filename'] #for methodinfo in modified: # print "\t%s" % methodinfo g = Generator(f1['filename'], modified) g.generate() #c.dump_method_content() #c.pick_same_method_name()"""
""" Main: Archivo que muestra el uso basico de la clase Comparator """ # Se utiliza el modulo py_midicsv para extraer las notas desde un archivo MIDI. import py_midicsv as pm # Sin embargo, lo unico necesario para utilizar esta clase es tener un lista de notas con la notacion en numero de las notas musicales. from Comparator import Comparator # Se cambia el formato del archivo de MIDI a CSV OnRepeat = pm.midi_to_csv(r"dummy.mid") # Extraccion de Notas de Archivo MIDI notes = [] for l in OnRepeat: line = l.split(",") if len(line) >= 5: if line[2] == " Note_on_c": m = int(line[4]) notes.append(m) # Se inicializa el objeto de la clase Comparator con los intervalos de la Escala Mayor majorComp = Comparator([0, 2, 4, 5, 7, 9, 11]) notesStr = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"] indiceMayor = majorComp.analyze(notes) print("Indices Escala Mayor", indiceMayor) print("\nEscala:", notesStr[indiceMayor.index(max(indiceMayor))], "mayor\n")
def test_compute_with_different_start_col(self): c = Comparator([[]], 2) err = c.compute_error([1, 2, 3, 4], [50, 60, 3, 4]) print("ERROR: {0}".format(err)) self.assertTrue(err == 0.0)