def iterate_runs(V, initial_aerosols, T, P, dt=0.01, dt_iters=2, max_steps=500): """ Iterate through several different strategies for integrating the parcel model. """ aerosols = initial_aerosols if V <= 0: return 0., 0., 0. ## Check that there are actually aerosols to deal with aerosol_N = [a.distribution.N for a in initial_aerosols] if len(aerosol_N) == 1: if aerosol_N[0] < 0.01: return (-9999., -9999., -9999.) else: new_aerosols = [] for i in xrange(len(aerosol_N)): if aerosol_N[i] > 0.01: new_aerosols.append(initial_aerosols[i]) aerosols = new_aerosols[:] S_max_arg, _ = arg2000(V, T, P, aerosols) S_max_fn, _ = fn2005(V, T, P, aerosols) dt_orig = dt*1. finished = False S_max = None ## Strategy 1: Try CVODE with modest tolerances. print " Trying CVODE with default tolerance" S_max = run_model(V, aerosols, T, P, dt, max_steps=2000, solver='cvode') ## Strategy 2: Iterate over some increasingly relaxed tolerances for LSODA. if not S_max: while dt > dt_orig/(2**dt_iters): print " Trying LSODA, dt = %1.3e, max_steps = %d" % (dt, max_steps) S_max = run_model(V, aerosols, T, P, dt, max_steps, solver='lsoda') if not S_max: dt = dt/2. print " Retrying..." else: finished = True break ## Strategy 3: Last ditch numerical integration with LSODE. This will likely take a ## a very long time. if not finished and not S_max: print " Trying LSODE" S_max = run_model(V, aerosols, T, P, dt_orig, max_steps=1000, solver='lsode') ## Strategy 4: If all else fails return -9999. if not S_max: S_max = -9999. print " failed", V, dt return S_max, S_max_arg, S_max_fn
from lognorm import Lognorm from parcel import AerosolSpecies from pce_params import pce_deg1, pce_deg2, pce_deg3, pce_deg4 from activation import arg2000, fn2005 P0 = 80000. # Pressure, Pa T0 = 283.15 # Temperature, K S0 = -0.00 # Supersaturation. 1-RH from wv term V = 0.7076312079 # m/s aerosol1 = AerosolSpecies('(NH4)2SO4', Lognorm(mu=0.02494149518, sigma=1.301854178, N=2299.298741 ), bins=200, kappa=0.4983795899) pce1_Smax, pce1_ratio = pce_deg1(V, T0, P0, aerosol1) pce2_Smax, pce2_ratio = pce_deg2(V, T0, P0, aerosol1) pce3_Smax, pce3_ratio = pce_deg3(V, T0, P0, aerosol1) pce4_Smax, pce4_ratio = pce_deg4(V, T0, P0, aerosol1) ghan_Smax, ghan_ratio = arg2000(V, T0, P0, [aerosol1, ]) nenes_Smax, nenes_ratio = fn2005(V, T0, P0, [aerosol1, ])