예제 #1
0
def test_linear_regressor_predict_not_fitted():
    """Test of `LinearRegressor` class with prediction without fit."""
    lr = LinearRegressor(learning_rate=0.1, iterations=1, standardize=False)

    X = np.array([1])

    with pytest.raises(NotFitted):
        lr.predict(X)
예제 #2
0
                                    history=True),
                     standardize=True)
lr.fit(X, y)

# Plot the results
figure, (a0, a1) = plt.subplots(1,
                                2,
                                num="Linear Regression",
                                figsize=(16, 9),
                                gridspec_kw={"width_ratios": [3, 1]})
figure.suptitle("Linear Regression on Boston house prices dataset",
                fontsize=16)

a0.plot(X, y, "b.")
a0.plot(
    range(3, 10),
    [lr.predict(np.array([[x]])).flat[0] for x in range(3, 10)],
    "r-",
    label="Linear regression",
)
a0.set(
    xlabel="Average number of rooms per dwelling",
    ylabel="Median value of owner-occupied homes in $1000's",
)
a0.legend(loc="upper left")

a1.plot(range(len(lr.history)), lr.history)
a1.set(xlabel="Number of iterations", ylabel="Training error objective")

plt.show()