def test_linear_regressor_score_not_fitted(): """Test of `LinearRegressor` class with score calculation without fit.""" lr = LinearRegressor(learning_rate=0.1, iterations=1, standardize=False) X = np.array([1]) y = np.array([1]) with pytest.raises(NotFitted): lr.score(X, y)
def test_linear_regressor_normal(): """Test of `normal` method of `LinearRegressor` class.""" lr = LinearRegressor(learning_rate=0.1, iterations=1, standardize=False) X = np.array([1]) y = np.array([1]) lr.normal(X, y) assert lr.score(X, y) == 1
def test_linear_regressor_standardized(): """Test of `LinearRegressor` class with standardization.""" lr = LinearRegressor(learning_rate=0.1, iterations=1, standardize=True) X = np.array([1]) y = np.array([1]) lr.fit(X, y) assert lr.score(X, y) == 1