예제 #1
0
    def test_expm(self):

        def f(x):
            x = x.reshape((2,2))
            return sum(expm(x))

        x = numpy.random.random(2*2)


        # forward mode

        ax = UTPM.init_jacobian(x)
        ay = f(ax)
        g1  = UTPM.extract_jacobian(ay)

        # reverse mode

        cg = CGraph()
        ax = Function(x)
        ay = f(ax)
        cg.independentFunctionList = [ax]
        cg.dependentFunctionList = [ay]

        g2 = cg.gradient(x)

        assert_array_almost_equal(g1, g2)
예제 #2
0
    def test_tracer_on_mixed_utpm_ndarray_mul(self):
        D, P = 1, 1
        A = numpy.arange(2 * 2, dtype=float).reshape(2, 2)

        x = UTPM(numpy.zeros((D, P, 2, 2)))

        def f(x):
            return sum(A * x)

        cg = CGraph()
        ax = Function(x)
        ay = f(ax)
        cg.independentFunctionList = [ax]
        cg.dependentFunctionList = [ay]

        assert_array_almost_equal(A, cg.gradient(x))
예제 #3
0
    def test_tracer_on_mixed_utpm_ndarray_mul(self):
        D, P = 1, 1
        A = numpy.arange(2 * 2, dtype=float).reshape(2, 2)

        x = UTPM(numpy.zeros((D, P, 2, 2)))

        def f(x):
            return sum(A * x)

        cg = CGraph()
        ax = Function(x)
        ay = f(ax)
        cg.independentFunctionList = [ax]
        cg.dependentFunctionList = [ay]

        assert_array_almost_equal(A, cg.gradient(x))
예제 #4
0
    def test_expm(self):
        def f(x):
            x = x.reshape((2, 2))
            return sum(expm(x))

        x = numpy.random.random(2 * 2)

        # forward mode

        ax = UTPM.init_jacobian(x)
        ay = f(ax)
        g1 = UTPM.extract_jacobian(ay)

        # reverse mode

        cg = CGraph()
        ax = Function(x)
        ay = f(ax)
        cg.independentFunctionList = [ax]
        cg.dependentFunctionList = [ay]

        g2 = cg.gradient(x)

        assert_array_almost_equal(g1, g2)
x.data[0, :] = numpy.random.rand(2 * N, 1)
x.data[1, :, :, 0] = numpy.eye(P)
y = x[N:]
x = x[:N]

# wrap the UTPM instance in a Function instance to trace all operations
# that have x as an argument
# create a CGraph instance that to store the computational trace
cg = CGraph().trace_on()
x = Function(x)
y = Function(y)
z = f(x, y)
cg.trace_off()

# define dependent and independent variables in the computational procedure
cg.independentFunctionList = [x, y]
cg.dependentFunctionList = [z]

# Since the UTPM instrance is wrapped in a Function instance we have to access it
# by y.x. That means the Jacobian is
grad1 = z.x.data[1, :, 0]

print('forward gradient g(x) = \n', grad1)

# Now we want to compute the same Jacobian in the reverse mode of AD
# before we do that we have a look what the computational graph looks like:
# print 'Computational graph is', cg

# the reverse mode is called by cg.pullback([ybar])
# it is a little hard to explain what's going on here. Suffice to say that we
# now compute one row of the Jacobian instead of one column as in the forward mode
    Q, R = qr(J1_tilde)
    V = solve(R.T, Q2)
    return dot(V.T, V)


# dimensions of the involved matrices
D, P, M, N, K, Nx = 2, 1, 5, 3, 1, 1

# trace the function evaluation of METHOD 1: nullspace method
cg1 = CGraph()
J1 = Function(UTPM(numpy.random.rand(*(D, P, M, N))))
J2 = Function(UTPM(numpy.random.rand(*(D, P, K, N))))
C = eval_covariance_matrix_qr(J1, J2)
y = C[0, 0]
cg1.trace_off()
cg1.independentFunctionList = [J1, J2]
cg1.dependentFunctionList = [y]
print('covariance matrix: C =\n', C)

# trace the function evaluation of METHOD 2: naive method (potentially numerically unstable)
cg2 = CGraph()
J1 = Function(J1.x)
J2 = Function(J2.x)
C2 = eval_covariance_matrix_naive(J1, J2)
y = C2[0, 0]
cg2.trace_off()
cg2.independentFunctionList = [J1, J2]
cg2.dependentFunctionList = [y]
print('covariance matrix: C =\n', C2)

# check that both algorithms returns the same result
예제 #7
0
"""
This example shows that most computations can be performed by numpy functions
on arrays of UTPM objects.

Just bear in mind that is much faster use UTPM instances of matrices than numpy.ndarrays
with UTPM elements.

"""

import numpy, os
from algopy import CGraph, Function, UTPM, dot, qr, eigh, inv

N, D, P = 2, 2, 1
cg = CGraph()
x = numpy.array([Function(UTPM(numpy.random.rand(*(D, P)))) for n in range(N)])
A = numpy.outer(x, x)
A = numpy.exp(A)
y = numpy.dot(A, x)

cg.independentFunctionList = list(x)
cg.dependentFunctionList = list(y)

cg.plot(os.path.join(os.path.dirname(__file__), 'numpy_dot_graph.svg'))
    """ some vector-valued function """
    retval = algopy.zeros(3, dtype=x)
    retval[0] = algopy.sin(x**2 + y)
    retval[1] = algopy.cos(x+y) - x
    retval[2] = algopy.sin(x)**2 + algopy.cos(x)**2
    return retval

# trace the function evaluation
# and store the computational graph in cg
cg = CGraph()
ax = 3.
ay = 5.
fx = Function(ax)
fy = Function(ay)
fz = eval_g(fx, fy)
cg.independentFunctionList = [fx, fy]
cg.dependentFunctionList = [fz]

# compute Taylor series
#
#  Jx( 1. + 2.*t + 3.*t**2 + 4.*t**3 + 5.*t**5,
#      6. + 7.*t + 8.*t**2 + 9.*t**3 + 10.*t**5 )
#  Jy( 1. + 2.*t + 3.*t**2 + 4.*t**3 + 5.*t**5,
#      6. + 7.*t + 8.*t**2 + 9.*t**3 + 10.*t**5 )
#
# where
#
# Jx = dg/dx
# Jy = dg/dy

    Q,R = qr(J1_tilde)
    V = solve(R.T, Q2)
    return dot(V.T,V)


# dimensions of the involved matrices
D,P,M,N,K,Nx = 2,1,5,3,1,1

# trace the function evaluation of METHOD 1: nullspace method
cg1 = CGraph()
J1 = Function(UTPM(numpy.random.rand(*(D,P,M,N))))
J2 = Function(UTPM(numpy.random.rand(*(D,P,K,N))))
C = eval_covariance_matrix_qr(J1, J2)
y = C[0,0]
cg1.trace_off()
cg1.independentFunctionList = [J1, J2]
cg1.dependentFunctionList = [y]
print('covariance matrix: C =\n',C)

# trace the function evaluation of METHOD 2: naive method (potentially numerically unstable)
cg2 = CGraph()
J1 = Function(J1.x)
J2 = Function(J2.x)
C2 = eval_covariance_matrix_naive(J1, J2)
y = C2[0,0]
cg2.trace_off()
cg2.independentFunctionList = [J1, J2]
cg2.dependentFunctionList = [y]
print('covariance matrix: C =\n',C2)

# check that both algorithms returns the same result
예제 #10
0
from algopy import CGraph, Function
cg = CGraph()
cg.trace_on()
x = Function(1)
y = Function(3)
z = x * y + x
cg.trace_off()
cg.independentFunctionList = [x,y]
cg.dependentFunctionList = [z]
print cg
cg.plot('example_tracer_cgraph.png')
n_p = 512  # Datenpunkte pro Periode

t = np.arange(n * n_p) / (n_p * f)  # Zeitvektor
current = i_hat * (np.sin(2 * np.pi * f * t) +
                   0.7 * np.sin(6 * np.pi * f * t + 1))  # Stromvorgabe
H = current / (2 * np.pi * r)  # Resultierende Feldvorgabe

graph = CGraph()
graph.trace_on()
x = Function([alpha, a, k, c, Msat])

# Parametervektor
p = {'alpha': x[0], 'a': x[1], 'k': x[2], 'c': x[3], 'm_sat': x[4]}

model = JilesAthertonModel.from_dict(p)
M = model.integrate_rk4(t, H)

H = H[::2]
t = t[::2]
B = mu_0 * (H + M)
dB_dt = np.zeros(np.size(B))
new = np.append([0.0], (B[1:] - B[0:-1]) / (t[1:] - t[0:-1]))

P = np.sum(0.5 * H * new)

graph.trace_off()
graph.independentFunctionList = [x]
graph.dependentFunctionList = [P]

a = graph.gradient([alpha, a, k, c, Msat])
print(a)
예제 #12
0
"""
This example shows that most computations can be performed by numpy functions
on arrays of UTPM objects.

Just bear in mind that is much faster use UTPM instances of matrices than numpy.ndarrays
with UTPM elements.

"""

import numpy, os
from algopy import CGraph, Function, UTPM, dot, qr, eigh, inv

N,D,P = 2,2,1
cg = CGraph()
x = numpy.array([ Function(UTPM(numpy.random.rand(*(D,P)))) for n in range(N)])
A = numpy.outer(x,x)
A = numpy.exp(A)
y = numpy.dot(A,x)

cg.independentFunctionList = list(x)
cg.dependentFunctionList = list(y)

cg.plot(os.path.join(os.path.dirname(__file__),'numpy_dot_graph.svg'))
예제 #13
0
# forward mode with ALGOPY
utp = logp(x, mu, sigma).data[:, 0]
print(
    'function evaluation = %f\n1st directional derivative = %f\n2nd directional derivative = %f'
    % (utp[0], 1. * utp[1], 2. * utp[2]))

# finite differences solution:
print('finite differences derivative =\n',
      (logp(x, 3.5 + 10**-8, sigma) - logp(x, 3.5, sigma)) / 10**-8)

# trace function evaluation
cg = CGraph()
mu = Function(UTPM([[3.5], [1], [0]]))  #unknown variable
out = logp(x, mu, sigma)
cg.trace_off()
cg.independentFunctionList = [mu]
cg.dependentFunctionList = [out]
cg.plot(
    os.path.join(os.path.dirname(os.path.realpath(__file__)),
                 'posterior_log_probability_cgraph.png'))

# reverse mode with ALGOPY
outbar = UTPM([[1.], [0], [0]])
cg.pullback([outbar])

gradient = mu.xbar.data[0, 0]
Hess_vec = mu.xbar.data[1, 0]

print('gradient = ', gradient)
print('Hessian vector product = ', Hess_vec)
예제 #14
0
print 'function evaluation =\n',logp(x,3.5,sigma)

# forward mode with ALGOPY
utp = logp(x, mu, sigma).data[:,0]
print 'function evaluation = %f\n1st directional derivative = %f\n2nd directional derivative = %f'%(utp[0], 1.*utp[1], 2.*utp[2])

# finite differences solution:
print 'finite differences derivative =\n',(logp(x,3.5+10**-8,sigma) - logp(x, 3.5, sigma))/10**-8

# trace function evaluation
cg = CGraph()
mu = Function(UTPM([[3.5],[1],[0]])) #unknown variable
out = logp(x, mu, sigma)
cg.trace_off()
cg.independentFunctionList = [mu]
cg.dependentFunctionList = [out]
cg.plot(os.path.join(os.path.dirname(os.path.realpath(__file__)),'posterior_log_probability_cgraph.png'))

# reverse mode with ALGOPY
outbar = UTPM([[1.],[0],[0]])
cg.pullback([outbar])
    
gradient =  mu.xbar.data[0,0]
Hess_vec =  mu.xbar.data[1,0]

print 'gradient = ', gradient
print 'Hessian vector product = ', Hess_vec


예제 #15
0
    retval = algopy.zeros(3, dtype=x)
    retval[0] = algopy.sin(x**2 + y)
    retval[1] = algopy.cos(x + y) - x
    retval[2] = algopy.sin(x)**2 + algopy.cos(x)**2
    return retval


# trace the function evaluation
# and store the computational graph in cg
cg = CGraph()
ax = 3.
ay = 5.
fx = Function(ax)
fy = Function(ay)
fz = eval_g(fx, fy)
cg.independentFunctionList = [fx, fy]
cg.dependentFunctionList = [fz]

# compute Taylor series
#
#  Jx( 1. + 2.*t + 3.*t**2 + 4.*t**3 + 5.*t**5,
#      6. + 7.*t + 8.*t**2 + 9.*t**3 + 10.*t**5 )
#  Jy( 1. + 2.*t + 3.*t**2 + 4.*t**3 + 5.*t**5,
#      6. + 7.*t + 8.*t**2 + 9.*t**3 + 10.*t**5 )
#
# where
#
# Jx = dg/dx
# Jy = dg/dy

# setup input Taylor polynomials