예제 #1
0
def get_lane_direction(pos, city, am):
    if am is None:
        from argoverse.map_representation.map_api import ArgoverseMap
        am = ArgoverseMap()
    else:
        pass
    drct_conf = np.array([np.append(*am.get_lane_direction(p[:2], city)) for p in pos])
    
    return drct_conf
예제 #2
0
def get_batch_lane_direction(pos, city, am):
    if am is None:
        from argoverse.map_representation.map_api import ArgoverseMap
        am = ArgoverseMap()
    else:
        pass
    drct_conf = list()
    
    for ps, c in zip(pos, city):
        drct_conf.append(np.array([np.append(*am.get_lane_direction(p[:2], c)) for p in ps]))
    
    return drct_conf
예제 #3
0
    def render_bev_labels_mpl(
        self,
        city_name: str,
        ax: plt.Axes,
        axis: str,
        lidar_pts: np.ndarray,
        local_lane_polygons: np.ndarray,
        local_das: np.ndarray,
        log_id: str,
        timestamp: int,
        city_to_egovehicle_se3: SE3,
        avm: ArgoverseMap,
    ) -> None:
        """Plot nearby lane polygons and nearby driveable areas (da) on the Matplotlib axes.

        Args:
            city_name: The name of a city, e.g. `"PIT"`
            ax: Matplotlib axes
            axis: string, either 'ego_axis' or 'city_axis' to demonstrate the
            lidar_pts:  Numpy array of shape (N,3)
            local_lane_polygons: Polygons representing the local lane set
            local_das: Numpy array of objects of shape (N,) where each object is of shape (M,3)
            log_id: The ID of a log
            timestamp: In nanoseconds
            city_to_egovehicle_se3: Transformation from egovehicle frame to city frame
            avm: ArgoverseMap instance
        """
        if axis is not "city_axis":
            # rendering instead in the egovehicle reference frame
            for da_idx, local_da in enumerate(local_das):
                local_da = city_to_egovehicle_se3.inverse_transform_point_cloud(
                    local_da)
                local_das[da_idx] = rotate_polygon_about_pt(
                    local_da, city_to_egovehicle_se3.rotation, np.zeros(3))

            for lane_idx, local_lane_polygon in enumerate(local_lane_polygons):
                local_lane_polygon = city_to_egovehicle_se3.inverse_transform_point_cloud(
                    local_lane_polygon)
                local_lane_polygons[lane_idx] = rotate_polygon_about_pt(
                    local_lane_polygon, city_to_egovehicle_se3.rotation,
                    np.zeros(3))

        draw_lane_polygons(ax, local_lane_polygons)
        draw_lane_polygons(ax, local_das, color="tab:pink")

        if axis is not "city_axis":
            lidar_pts = rotate_polygon_about_pt(
                lidar_pts, city_to_egovehicle_se3.rotation, np.zeros((3, )))
            draw_point_cloud_bev(ax, lidar_pts)

        objects = self.log_timestamp_dict[log_id][timestamp]

        all_occluded = True
        for frame_rec in objects:
            if frame_rec.occlusion_val != IS_OCCLUDED_FLAG:
                all_occluded = False

        if not all_occluded:
            for i, frame_rec in enumerate(objects):
                bbox_city_fr = frame_rec.bbox_city_fr
                bbox_ego_frame = frame_rec.bbox_ego_frame
                color = frame_rec.color

                if frame_rec.occlusion_val != IS_OCCLUDED_FLAG:
                    bbox_ego_frame = rotate_polygon_about_pt(
                        bbox_ego_frame, city_to_egovehicle_se3.rotation,
                        np.zeros((3, )))
                    if axis is "city_axis":
                        plot_bbox_2D(ax, bbox_city_fr, color)
                        if self.plot_lane_tangent_arrows:
                            bbox_center = np.mean(bbox_city_fr, axis=0)
                            tangent_xy, conf = avm.get_lane_direction(
                                query_xy_city_coords=bbox_center[:2],
                                city_name=city_name)
                            dx = tangent_xy[0] * LANE_TANGENT_VECTOR_SCALING
                            dy = tangent_xy[1] * LANE_TANGENT_VECTOR_SCALING
                            ax.arrow(bbox_center[0],
                                     bbox_center[1],
                                     dx,
                                     dy,
                                     color="r",
                                     width=0.5,
                                     zorder=2)
                    else:
                        plot_bbox_2D(ax, bbox_ego_frame, color)
                        cuboid_lidar_pts, _ = filter_point_cloud_to_bbox_2D_vectorized(
                            bbox_ego_frame[:, :2], copy.deepcopy(lidar_pts))
                        if cuboid_lidar_pts is not None:
                            draw_point_cloud_bev(ax, cuboid_lidar_pts, color)

        else:
            logger.info(f"all occluded at {timestamp}")
            xcenter = city_to_egovehicle_se3.translation[0]
            ycenter = city_to_egovehicle_se3.translation[1]
            ax.text(xcenter - 146,
                    ycenter + 50,
                    "ALL OBJECTS OCCLUDED",
                    fontsize=30)
예제 #4
0
def verify_lane_tangent_vector() -> None:
    """Debug low confidence lane tangent predictions.

    I noticed that the confidence score of lane direction is
    pretty low (almost zero) in some logs
    """
    POSE_FILE_DIR = "../debug_lane_tangent"

    # both of these are Pittsburgh logs
    log_ids = [
        "033669d3-3d6b-3d3d-bd93-7985d86653ea",
        "028d5cb1-f74d-366c-85ad-84fde69b0fd3",
    ]

    avm = ArgoverseMap()
    city_name = "PIT"
    for log_id in log_ids:
        print(f"On {log_id}")
        pose_fpaths = glob.glob(
            f"{POSE_FILE_DIR}/{log_id}/poses/city_SE3_egovehicle_*.json")
        num_poses = len(pose_fpaths)
        egovehicle_xy_arr = np.zeros((num_poses, 2))
        for i, pose_fpath in enumerate(pose_fpaths):
            json_data = read_json_file(pose_fpath)
            egovehicle_xy_arr[i, 0] = json_data["translation"][0]
            egovehicle_xy_arr[i, 1] = json_data["translation"][1]

        for i, query_xy_city_coords in enumerate(egovehicle_xy_arr[::10, :]):

            query_xy_city_coords = np.array(
                [3116.8282170094944, 1817.1269613456188])

            query_xy_city_coords = np.array(
                [3304.7072308190845, 1993.1670162837597])

            # start = time.time()
            lane_dir_vector, confidence = avm.get_lane_direction(
                query_xy_city_coords, city_name, visualize=False)
            # end = time.time()
            # duration = end - start
            # print(f'query took {duration} s')
            # if confidence < 0.5:
            print(f"\t{i}: {confidence}")
            # if confidence == 0.:
            #   pdb.set_trace()
            # This was an absolute failure case!
            # lane_dir_vector, confidence = avm.get_lane_direction(query_xy_city_coords, city_name, visualize=True)

            visualize = True
            if visualize:
                fig = plt.figure(figsize=(22.5, 8))
                ax = fig.add_subplot(111)

                dx = lane_dir_vector[0] * 20
                dy = lane_dir_vector[1] * 20
                plt.arrow(
                    query_xy_city_coords[0],
                    query_xy_city_coords[1],
                    dx,
                    dy,
                    color="r",
                    width=0.3,
                    zorder=2,
                )

                query_x, query_y = query_xy_city_coords
                ax.scatter([query_x], [query_y], 100, color="k", marker=".")
                # make another plot now!

                plot_nearby_halluc_lanes(ax, city_name, avm, query_x, query_y)

                ax.axis("equal")
                plt.show()
                plt.close("all")