예제 #1
0
def verify_point_in_polygon_for_lanes():
    """
        """
    avm = ArgoverseMap()

    # ref_query_x = 422.
    # ref_query_y = 1005.

    ref_query_x = -662
    ref_query_y = 2817

    city_name = "MIA"
    for trial_idx in range(10):
        query_x = ref_query_x + (np.random.rand() - 0.5) * 10
        query_y = ref_query_y + (np.random.rand() - 0.5) * 10

        fig = plt.figure(figsize=(22.5, 8))
        ax = fig.add_subplot(111)
        ax.scatter([query_x], [query_y], 100, color="k", marker=".")

        occupied_lane_ids = avm.get_lane_segments_containing_xy(
            query_x, query_y, city_name)
        for occupied_lane_id in occupied_lane_ids:
            halluc_lane_polygon = avm.get_lane_segment_polygon(
                occupied_lane_id, city_name)
            plot_lane_segment_patch(halluc_lane_polygon,
                                    ax,
                                    color="y",
                                    alpha=0.3)

        nearby_lane_ids = avm.get_lane_ids_in_xy_bbox(query_x, query_y,
                                                      city_name)
        nearby_lane_ids = set(nearby_lane_ids) - set(occupied_lane_ids)
        for nearby_lane_id in nearby_lane_ids:
            halluc_lane_polygon = avm.get_lane_segment_polygon(
                nearby_lane_id, city_name)
            plot_lane_segment_patch(halluc_lane_polygon,
                                    ax,
                                    color="r",
                                    alpha=0.3)

        ax.axis("equal")
        plt.show()
        plt.close("all")
예제 #2
0
 def get_point_in_polygon_score(self, lane_seq: List[int],
                                xy_seq: np.ndarray, city_name: str,
                                avm: ArgoverseMap) -> int:
     """Get the number of coordinates that lie insde the lane seq polygon.
     Args:
         lane_seq: Sequence of lane ids
         xy_seq: Trajectory coordinates
         city_name: City name (PITT/MIA)
         avm: Argoverse map_api instance
     Returns:
         point_in_polygon_score: Number of coordinates in the trajectory that lie within the lane sequence
     """
     lane_seq_polygon = cascaded_union([
         Polygon(avm.get_lane_segment_polygon(lane, city_name)).buffer(0)
         for lane in lane_seq
     ])
     point_in_polygon_score = 0
     for xy in xy_seq:
         point_in_polygon_score += lane_seq_polygon.contains(Point(xy))
     return point_in_polygon_score
예제 #3
0
def plot_nearby_halluc_lanes(
    ax: plt.Axes,
    city_name: str,
    avm: ArgoverseMap,
    query_x: float,
    query_y: float,
    patch_color: str = "r",
    radius: float = 20.0,
) -> None:
    """Produce lane segment graphs for visual verification."""
    nearby_lane_ids = avm.get_lane_ids_in_xy_bbox(query_x, query_y, city_name,
                                                  radius)
    for nearby_lane_id in nearby_lane_ids:
        halluc_lane_polygon = avm.get_lane_segment_polygon(
            nearby_lane_id, city_name)
        plot_lane_segment_patch(halluc_lane_polygon,
                                ax,
                                color=patch_color,
                                alpha=0.3)
        plt.text(
            halluc_lane_polygon[:, 0].mean(),
            halluc_lane_polygon[:, 1].mean(),
            str(nearby_lane_id),
        )
예제 #4
0
class argoverse_processor(object):
    """
    This object can extract context information from raw map file and raw trajectory file.
    """
    def __init__(self, scenario_path = _sample_path):
        self.map_pres = ArgoverseMap()
        self.scenarios = ArgoverseForecastingLoader(scenario_path)
        self.seq_lane_props = self.map_pres.city_lane_centerlines_dict

    def acquire_agent_trajectory(self, one_scenario):
        # There is 5 seconds of one scenario in total. 0.1s interval so that it has 50 items.
        return one_scenario.agent_traj

    def acquire_city(self, one_scenario):
        return one_scenario.seq_df['CITY_NAME'].values[0]

    def acquire_lane_centerlines_and_edgelines(self, one_scenario):
        city_name = self.acquire_city(one_scenario)
        seq_def = one_scenario.seq_df
        seq_lanes = self.seq_lane_props[city_name]
        
        x_min = min(seq_def['X'])
        x_max = max(seq_def['X'])
        y_min = min(seq_def['Y'])
        y_max = max(seq_def['Y'])

        lane_centerlines = []
        lane_ids = []
        
        # Get lane centerlines which lie within the range of trajectories
        for lane_id, lane_props in seq_lanes.items():

            lane_cl = lane_props.centerline

            if (
                np.min(lane_cl[:, 0]) < x_max
                and np.min(lane_cl[:, 1]) < y_max
                and np.max(lane_cl[:, 0]) > x_min
                and np.max(lane_cl[:, 1]) > y_min
            ):
                lane_centerlines.append(lane_cl)
                lane_ids.append(lane_id)

        edges1 = []
        edges2 = []

        for lane_id in lane_ids:
            lane_polyline = self.map_pres.get_lane_segment_polygon(lane_id, city_name)
            lane_polyline = lane_polyline[:-1]
            break_point = len(lane_polyline)/2
            break_point = int(break_point)
            edges1.append(lane_polyline[:break_point])
            edges2.append(lane_polyline[break_point:])

        return lane_centerlines, edges1, edges2

    def visualization_lanes(self, one_scenario):
        plt.figure(figsize=(8, 7))
        lane_cls, lane_eds1, lane_eds2 = self.acquire_lane_centerlines_and_edgelines(one_scenario)
        
        for lane_cl in lane_cls:
            a, = plt.plot(lane_cl[:, 0], lane_cl[:, 1], '--', label='lane_centerline', color='#17A9C3', linewidth=1) # color='#C7398D')
        
        for lane_ed in lane_eds1:
            b, = plt.plot(lane_ed[:, 0], lane_ed[:, 1], label='lane_edgeline', color='#C7398D', linewidth=1) # color='#314E87')
        
        for lane_ed in lane_eds2:
            c, = plt.plot(lane_ed[:, 0], lane_ed[:, 1], label='lane_edgeline', color='#C7398D', linewidth=1)
        
        plt.legend([a, b], ['lane_centerline', 'lane_edgeline'], fontsize=10)
        plt.axis('off')
        plt.show()


    def visualization_trajectory(self, one_scenario):
        plt.figure(figsize=(8, 7))
        lane_cls, lane_eds1, lane_eds2 = self.acquire_lane_centerlines_and_edgelines(one_scenario)
        
        for lane_cl in lane_cls:
            a, = plt.plot(lane_cl[:, 0], lane_cl[:, 1], '--', color='grey', linewidth=1) # color='#C7398D')
        
        for lane_ed in lane_eds1:
            b, = plt.plot(lane_ed[:, 0], lane_ed[:, 1], color='grey', linewidth=1) # color='#314E87')
        
        for lane_ed in lane_eds2:
            c, = plt.plot(lane_ed[:, 0], lane_ed[:, 1], color='grey', linewidth=1)

        traj = self.acquire_agent_trajectory(one_scenario)

        train_traj = traj[:20]
        pred_traj = traj[20:]

        d, = plt.plot(train_traj[:, 0], train_traj[:, 1], '-', color='#17A9C3', alpha=1, linewidth=2, zorder=2)
        e, = plt.plot(train_traj[-1, 0], train_traj[-1, 1], 'o', color='#17A9C3', alpha=1, markersize=7, zorder=2)
        
        f, = plt.plot(pred_traj[:, 0], pred_traj[:, 1], '-', color='#C7398D', alpha=1, linewidth=1, zorder=2)

        plt.legend([a, b, d, f], ['lane_centerline', 'lane_edgeline', 'observed_agent_trajectory', 'future_agent_trajectory'], fontsize=10)
        plt.axis('off')
        plt.show()
예제 #5
0
        
        if len(candidate_cl)<=2:
            continue


        label = int(label)
        s_line = source_closest_line.centerline
        t_line = target_closest_line.centerline
        
        label_line = candidate_cl[label]
        other_lines = candidate_cl[0:label] + candidate_cl[label+1:]
        
        intersections = []

        for row in separation_points:
            intersection = Polygon(avm.get_lane_segment_polygon(row["ids"][0], city)[:, 0:2])

            for id in row["ids"][1:]:
                intersection = intersection.intersection(Polygon(avm.get_lane_segment_polygon(id, city)[:, 0:2]))

            intersections.append(intersection)

        intersections = [intersection.exterior.coords for intersection in intersections]

        points = [ row["coord"] for row in separation_points]
        
        image = draw(source, target, source_ref_line, label_line=label_line, other_lines=other_lines, points=points, polygons=intersections)

        cv2.imwrite(output_file%(i+1), image)

    
예제 #6
0
class ArgoDataset(Dataset):
    def __init__(self, split, config, train=True):
        self.config = config
        self.train = train

        if 'preprocess' in config and config['preprocess']:
            if train:
                self.split = np.load(self.config['preprocess_train'],
                                     allow_pickle=True)
            else:
                self.split = np.load(self.config['preprocess_val'],
                                     allow_pickle=True)
        else:
            self.avl = ArgoverseForecastingLoader(split)
            self.avl.seq_list = sorted(self.avl.seq_list)
            self.am = ArgoverseMap()

        if 'raster' in config and config['raster']:
            #TODO: DELETE
            self.map_query = MapQuery(config['map_scale'])

    def __getitem__(self, idx):
        if 'preprocess' in self.config and self.config['preprocess']:
            data = self.split[idx]

            if self.train and self.config['rot_aug']:
                new_data = dict()
                for key in ['city', 'orig', 'gt_preds', 'has_preds']:
                    if key in data:
                        new_data[key] = ref_copy(data[key])

                dt = np.random.rand() * self.config['rot_size']  #np.pi * 2.0
                theta = data['theta'] + dt
                new_data['theta'] = theta
                new_data['rot'] = np.asarray(
                    [[np.cos(theta), -np.sin(theta)],
                     [np.sin(theta), np.cos(theta)]], np.float32)

                rot = np.asarray([[np.cos(-dt), -np.sin(-dt)],
                                  [np.sin(-dt), np.cos(-dt)]], np.float32)
                new_data['feats'] = data['feats'].copy()
                new_data['feats'][:, :, :2] = np.matmul(
                    new_data['feats'][:, :, :2], rot)
                new_data['ctrs'] = np.matmul(data['ctrs'], rot)

                graph = dict()
                for key in [
                        'num_nodes', 'turn', 'control', 'intersect', 'pre',
                        'suc', 'lane_idcs', 'left_pairs', 'right_pairs',
                        'left', 'right'
                ]:
                    graph[key] = ref_copy(data['graph'][key])
                graph['ctrs'] = np.matmul(data['graph']['ctrs'], rot)
                graph['feats'] = np.matmul(data['graph']['feats'], rot)
                new_data['graph'] = graph
                data = new_data
            else:
                new_data = dict()
                for key in [
                        'city', 'orig', 'gt_preds', 'has_preds', 'theta',
                        'rot', 'feats', 'ctrs', 'graph'
                ]:
                    if key in data:
                        new_data[key] = ref_copy(data[key])
                data = new_data

            if 'raster' in self.config and self.config['raster']:
                data.pop('graph')
                x_min, x_max, y_min, y_max = self.config['pred_range']
                cx, cy = data['orig']

                region = [cx + x_min, cx + x_max, cy + y_min, cy + y_max]
                raster = self.map_query.query(region, data['theta'],
                                              data['city'])

                data['raster'] = raster
            return data

        data = self.read_argo_data(idx)
        data = self.get_obj_feats(data)
        data['idx'] = idx

        if 'raster' in self.config and self.config['raster']:
            x_min, x_max, y_min, y_max = self.config['pred_range']
            cx, cy = data['orig']

            region = [cx + x_min, cx + x_max, cy + y_min, cy + y_max]
            raster = self.map_query.query(region, data['theta'], data['city'])

            data['raster'] = raster
            return data

        data['graph'] = self.get_lane_graph(data)
        return data

    def __len__(self):
        if 'preprocess' in self.config and self.config['preprocess']:
            return len(self.split)
        else:
            return len(self.avl)

    def read_argo_data(self, idx):
        city = copy.deepcopy(self.avl[idx].city)
        """TIMESTAMP,TRACK_ID,OBJECT_TYPE,X,Y,CITY_NAME"""
        df = copy.deepcopy(self.avl[idx].seq_df)

        agt_ts = np.sort(np.unique(df['TIMESTAMP'].values))
        mapping = dict()
        for i, ts in enumerate(agt_ts):
            mapping[ts] = i

        trajs = np.concatenate(
            (df.X.to_numpy().reshape(-1, 1), df.Y.to_numpy().reshape(-1, 1)),
            1)

        steps = [mapping[x] for x in df['TIMESTAMP'].values]
        steps = np.asarray(steps, np.int64)

        objs = df.groupby(['TRACK_ID', 'OBJECT_TYPE']).groups
        keys = list(objs.keys())
        obj_type = [x[1] for x in keys]

        agt_idx = obj_type.index('AGENT')
        idcs = objs[keys[agt_idx]]

        agt_traj = trajs[idcs]
        agt_step = steps[idcs]

        del keys[agt_idx]
        ctx_trajs, ctx_steps = [], []
        for key in keys:
            idcs = objs[key]
            ctx_trajs.append(trajs[idcs])
            ctx_steps.append(steps[idcs])

        data = dict()
        data['city'] = city
        data['trajs'] = [agt_traj] + ctx_trajs
        data['steps'] = [agt_step] + ctx_steps
        return data

    def get_obj_feats(self, data):
        orig = data['trajs'][0][19].copy().astype(np.float32)

        if self.train and self.config['rot_aug']:
            theta = np.random.rand() * np.pi * 2.0
        else:
            pre = data['trajs'][0][18] - orig
            theta = np.pi - np.arctan2(pre[1], pre[0])

        rot = np.asarray([[np.cos(theta), -np.sin(theta)],
                          [np.sin(theta), np.cos(theta)]], np.float32)

        feats, ctrs, gt_preds, has_preds = [], [], [], []
        for traj, step in zip(data['trajs'], data['steps']):
            if 19 not in step:
                continue

            gt_pred = np.zeros((30, 2), np.float32)
            has_pred = np.zeros(30, np.bool)
            future_mask = np.logical_and(step >= 20, step < 50)
            post_step = step[future_mask] - 20
            post_traj = traj[future_mask]
            gt_pred[post_step] = post_traj
            has_pred[post_step] = 1

            obs_mask = step < 20
            step = step[obs_mask]
            traj = traj[obs_mask]
            idcs = step.argsort()
            step = step[idcs]
            traj = traj[idcs]

            for i in range(len(step)):
                if step[i] == 19 - (len(step) - 1) + i:
                    break
            step = step[i:]
            traj = traj[i:]

            feat = np.zeros((20, 3), np.float32)
            feat[step, :2] = np.matmul(rot, (traj - orig.reshape(-1, 2)).T).T
            feat[step, 2] = 1.0

            x_min, x_max, y_min, y_max = self.config['pred_range']
            if feat[-1, 0] < x_min or feat[-1, 0] > x_max or feat[
                    -1, 1] < y_min or feat[-1, 1] > y_max:
                continue

            ctrs.append(feat[-1, :2].copy())
            feat[1:, :2] -= feat[:-1, :2]
            feat[step[0], :2] = 0
            feats.append(feat)
            gt_preds.append(gt_pred)
            has_preds.append(has_pred)

        feats = np.asarray(feats, np.float32)
        ctrs = np.asarray(ctrs, np.float32)
        gt_preds = np.asarray(gt_preds, np.float32)
        has_preds = np.asarray(has_preds, np.bool)

        data['feats'] = feats
        data['ctrs'] = ctrs
        data['orig'] = orig
        data['theta'] = theta
        data['rot'] = rot
        data['gt_preds'] = gt_preds
        data['has_preds'] = has_preds
        return data

    def get_lane_graph(self, data):
        """Get a rectangle area defined by pred_range."""
        x_min, x_max, y_min, y_max = self.config['pred_range']
        radius = max(abs(x_min), abs(x_max)) + max(abs(y_min), abs(y_max))
        lane_ids = self.am.get_lane_ids_in_xy_bbox(data['orig'][0],
                                                   data['orig'][1],
                                                   data['city'], radius)
        lane_ids = copy.deepcopy(lane_ids)

        lanes = dict()
        for lane_id in lane_ids:
            lane = self.am.city_lane_centerlines_dict[data['city']][lane_id]
            lane = copy.deepcopy(lane)
            centerline = np.matmul(data['rot'],
                                   (lane.centerline -
                                    data['orig'].reshape(-1, 2)).T).T
            x, y = centerline[:, 0], centerline[:, 1]
            if x.max() < x_min or x.min() > x_max or y.max() < y_min or y.min(
            ) > y_max:
                continue
            else:
                """Getting polygons requires original centerline"""
                polygon = self.am.get_lane_segment_polygon(
                    lane_id, data['city'])
                polygon = copy.deepcopy(polygon)
                lane.centerline = centerline
                lane.polygon = np.matmul(data['rot'],
                                         (polygon[:, :2] -
                                          data['orig'].reshape(-1, 2)).T).T
                lanes[lane_id] = lane

        lane_ids = list(lanes.keys())
        ctrs, feats, turn, control, intersect = [], [], [], [], []
        for lane_id in lane_ids:
            lane = lanes[lane_id]
            ctrln = lane.centerline
            num_segs = len(ctrln) - 1

            ctrs.append(np.asarray((ctrln[:-1] + ctrln[1:]) / 2.0, np.float32))
            feats.append(np.asarray(ctrln[1:] - ctrln[:-1], np.float32))

            x = np.zeros((num_segs, 2), np.float32)
            if lane.turn_direction == 'LEFT':
                x[:, 0] = 1
            elif lane.turn_direction == 'RIGHT':
                x[:, 1] = 1
            else:
                pass
            turn.append(x)

            control.append(lane.has_traffic_control *
                           np.ones(num_segs, np.float32))
            intersect.append(lane.is_intersection *
                             np.ones(num_segs, np.float32))

        node_idcs = []
        count = 0
        for i, ctr in enumerate(ctrs):
            node_idcs.append(range(count, count + len(ctr)))
            count += len(ctr)
        num_nodes = count

        pre, suc = dict(), dict()
        for key in ['u', 'v']:
            pre[key], suc[key] = [], []
        for i, lane_id in enumerate(lane_ids):
            lane = lanes[lane_id]
            idcs = node_idcs[i]

            pre['u'] += idcs[1:]
            pre['v'] += idcs[:-1]
            if lane.predecessors is not None:
                for nbr_id in lane.predecessors:
                    if nbr_id in lane_ids:
                        j = lane_ids.index(nbr_id)
                        pre['u'].append(idcs[0])
                        pre['v'].append(node_idcs[j][-1])

            suc['u'] += idcs[:-1]
            suc['v'] += idcs[1:]
            if lane.successors is not None:
                for nbr_id in lane.successors:
                    if nbr_id in lane_ids:
                        j = lane_ids.index(nbr_id)
                        suc['u'].append(idcs[-1])
                        suc['v'].append(node_idcs[j][0])

        lane_idcs = []
        for i, idcs in enumerate(node_idcs):
            lane_idcs.append(i * np.ones(len(idcs), np.int64))
        lane_idcs = np.concatenate(lane_idcs, 0)

        pre_pairs, suc_pairs, left_pairs, right_pairs = [], [], [], []
        for i, lane_id in enumerate(lane_ids):
            lane = lanes[lane_id]

            nbr_ids = lane.predecessors
            if nbr_ids is not None:
                for nbr_id in nbr_ids:
                    if nbr_id in lane_ids:
                        j = lane_ids.index(nbr_id)
                        pre_pairs.append([i, j])

            nbr_ids = lane.successors
            if nbr_ids is not None:
                for nbr_id in nbr_ids:
                    if nbr_id in lane_ids:
                        j = lane_ids.index(nbr_id)
                        suc_pairs.append([i, j])

            nbr_id = lane.l_neighbor_id
            if nbr_id is not None:
                if nbr_id in lane_ids:
                    j = lane_ids.index(nbr_id)
                    left_pairs.append([i, j])

            nbr_id = lane.r_neighbor_id
            if nbr_id is not None:
                if nbr_id in lane_ids:
                    j = lane_ids.index(nbr_id)
                    right_pairs.append([i, j])
        pre_pairs = np.asarray(pre_pairs, np.int64)
        suc_pairs = np.asarray(suc_pairs, np.int64)
        left_pairs = np.asarray(left_pairs, np.int64)
        right_pairs = np.asarray(right_pairs, np.int64)

        graph = dict()
        graph['ctrs'] = np.concatenate(ctrs, 0)
        graph['num_nodes'] = num_nodes
        graph['feats'] = np.concatenate(feats, 0)
        graph['turn'] = np.concatenate(turn, 0)
        graph['control'] = np.concatenate(control, 0)
        graph['intersect'] = np.concatenate(intersect, 0)
        graph['pre'] = [pre]
        graph['suc'] = [suc]
        graph['lane_idcs'] = lane_idcs
        graph['pre_pairs'] = pre_pairs
        graph['suc_pairs'] = suc_pairs
        graph['left_pairs'] = left_pairs
        graph['right_pairs'] = right_pairs

        for k1 in ['pre', 'suc']:
            for k2 in ['u', 'v']:
                graph[k1][0][k2] = np.asarray(graph[k1][0][k2], np.int64)

        for key in ['pre', 'suc']:
            if 'scales' in self.config and self.config['scales']:
                #TODO: delete here
                graph[key] += dilated_nbrs2(graph[key][0], graph['num_nodes'],
                                            self.config['scales'])
            else:
                graph[key] += dilated_nbrs(graph[key][0], graph['num_nodes'],
                                           self.config['num_scales'])
        return graph
예제 #7
0
def verify_halluc_lane_extent_index(enable_lane_boundaries=False):
    """

        """
    avm = ArgoverseMap()

    city_names = ["MIA", "PIT"]

    for city_name in city_names:
        # get all lane segment IDs inside of this city
        lane_segment_ids = list(
            avm.city_lane_centerlines_dict[city_name].keys())
        for lane_segment_id in lane_segment_ids:
            xmin, ymin, xmax, ymax = find_lane_segment_bounds_in_table(
                adm, city_name, lane_segment_id)

            predecessor_ids = avm.get_lane_segment_predecessor_ids(
                lane_segment_id, city_name)
            successor_ids = avm.get_lane_segment_successor_ids(
                lane_segment_id, city_name)
            (r_neighbor_id, l_neighbor_id) = avm.get_lane_segment_adjacent_ids(
                lane_segment_id, city_name)
            lane_centerline = avm.get_lane_segment_centerline(
                lane_segment_id, city_name)
            halluc_lane_polygon = avm.get_lane_segment_polygon(
                lane_segment_id, city_name)

            fig = plt.figure(figsize=(22.5, 8))
            ax = fig.add_subplot(111)

            # add the lane of interest
            add_lane_segment_to_ax(ax, lane_centerline, halluc_lane_polygon,
                                   "y", xmin, xmax, ymin, ymax)

            if predecessor_ids is not None:
                # add predecessors
                for predecessor_id in predecessor_ids:
                    lane_centerline = avm.get_lane_segment_centerline(
                        predecessor_id, city_name)
                    halluc_lane_polygon = avm.get_lane_segment_polygon(
                        predecessor_id, city_name)
                    xmin, ymin, xmax, ymax = find_lane_segment_bounds_in_table(
                        adm, city_name, predecessor_id)
                    add_lane_segment_to_ax(ax, lane_centerline,
                                           halluc_lane_polygon, "r", xmin,
                                           xmax, ymin, ymax)

            if successor_ids is not None:
                # add successors
                for successor_id in successor_ids:
                    lane_centerline = avm.get_lane_segment_centerline(
                        successor_id, city_name)
                    halluc_lane_polygon = avm.get_lane_segment_polygon(
                        successor_id, city_name)
                    xmin, ymin, xmax, ymax = find_lane_segment_bounds_in_table(
                        adm, city_name, successor_id)
                    add_lane_segment_to_ax(ax, lane_centerline,
                                           halluc_lane_polygon, "b", xmin,
                                           xmax, ymin, ymax)

            # add left neighbor
            if l_neighbor_id is not None:
                lane_centerline = avm.get_lane_segment_centerline(
                    l_neighbor_id, city_name)
                halluc_lane_polygon = avm.get_lane_segment_polygon(
                    l_neighbor_id, city_name)
                xmin, ymin, xmax, ymax = find_lane_segment_bounds_in_table(
                    adm, city_name, l_neighbor_id)
                add_lane_segment_to_ax(ax, lane_centerline,
                                       halluc_lane_polygon, "g", xmin, xmax,
                                       ymin, ymax)

            # add right neighbor
            if r_neighbor_id is not None:
                lane_centerline = avm.get_lane_segment_centerline(
                    r_neighbor_id, city_name)
                halluc_lane_polygon = avm.get_lane_segment_polygon(
                    r_neighbor_id, city_name)
                xmin, ymin, xmax, ymax = find_lane_segment_bounds_in_table(
                    adm, city_name, r_neighbor_id)
                add_lane_segment_to_ax(ax, lane_centerline,
                                       halluc_lane_polygon, "m", xmin, xmax,
                                       ymin, ymax)

            if enable_lane_boundaries:
                # Compare with Argo's proprietary, ground truth lane boundaries
                gt_lane_polygons = avm.city_to_lane_polygons_dict[city_name]
                for gt_lane_polygon in gt_lane_polygons:
                    dist = np.linalg.norm(
                        gt_lane_polygon.mean(axis=0)[:2] -
                        np.array([xmin, ymin]))
                    if dist < 30:
                        ax.plot(gt_lane_polygon[:, 0],
                                gt_lane_polygon[:, 1],
                                color="k",
                                alpha=0.3,
                                zorder=1)

            ax.axis("equal")
            plt.show()
            datetime_str = generate_datetime_string()
            plt.savefig(
                f"lane_segment_id_{lane_segment_id}_@_{datetime_str}.jpg")
            plt.close("all")
예제 #8
0
class GraphExtractor(object):
    def __init__(self, config, mode='train'):
        self.am = ArgoverseMap()
        self.config = config
        self.mode = mode

    def __del__(self):
        del self.am

    def dilated_nbrs(self, nbr, num_nodes, num_scales):
        data = np.ones(len(nbr['u']), np.bool)
        csr = sparse.csr_matrix((data, (nbr['u'], nbr['v'])),
                                shape=(num_nodes, num_nodes))

        mat = csr
        nbrs = []
        for i in range(1, num_scales):
            mat = mat * mat

            nbr = dict()
            coo = mat.tocoo()
            nbr['u'] = coo.row.astype(np.int16)
            nbr['v'] = coo.col.astype(np.int16)
            nbrs.append(nbr)
        return nbrs

    def extract(self, data):
        """Get a rectangle area defined by pred_range."""
        x_min, x_max, y_min, y_max = self.config['pred_range']
        radius = max(abs(x_min), abs(x_max)) + max(abs(y_min), abs(y_max))
        lane_ids = self.am.get_lane_ids_in_xy_bbox(data['orig'][0],
                                                   data['orig'][1],
                                                   data['city'], radius)
        lane_ids = copy.deepcopy(lane_ids)
        """Get all lane within self.config['pred_range'], convert centerline and polygon to rotated and biased"""
        # what's polygon
        lanes = dict()
        for lane_id in lane_ids:
            lane = self.am.city_lane_centerlines_dict[data['city']][lane_id]
            lane = copy.deepcopy(lane)
            centerline = np.matmul(data['rot'],
                                   (lane.centerline -
                                    data['orig'].reshape(-1, 2)).T).T
            x, y = centerline[:, 0], centerline[:, 1]
            if x.max() < x_min or x.min() > x_max or y.max() < y_min or y.min(
            ) > y_max:
                continue
            else:
                """Getting polygons requires original centerline"""
                polygon = self.am.get_lane_segment_polygon(
                    lane_id, data['city'])
                polygon = copy.deepcopy(polygon)
                lane.centerline = centerline
                lane.polygon = np.matmul(data['rot'],
                                         (polygon[:, :2] -
                                          data['orig'].reshape(-1, 2)).T).T
                lanes[lane_id] = lane
        """Lane feature: ctrs(position), feats(shape), turn, control, intersect"""
        lane_ids = list(lanes.keys())
        ctrs, feats, turn, control, intersect = [], [], [], [], []
        for lane_id in lane_ids:
            lane = lanes[lane_id]
            ctrln = lane.centerline
            num_segs = len(ctrln) - 1

            ctrs.append(np.asarray((ctrln[:-1] + ctrln[1:]) / 2.0, np.float32))
            feats.append(np.asarray(ctrln[1:] - ctrln[:-1], np.float32))

            x = np.zeros((num_segs, 2), np.float32)
            if lane.turn_direction == 'LEFT':
                x[:, 0] = 1
            elif lane.turn_direction == 'RIGHT':
                x[:, 1] = 1
            else:
                pass
            turn.append(x)

            control.append(lane.has_traffic_control *
                           np.ones(num_segs, np.float32))
            intersect.append(lane.is_intersection *
                             np.ones(num_segs, np.float32))

        # -------------------------node_idcs---------------------
        node_idcs = []
        count = 0
        for ctr in ctrs:  # node_idcs: list, i-th element: i-th lane nodes ids
            node_idcs.append(range(count, count + len(ctr)))
            count += len(ctr)
        num_nodes = count
        # -------------------------lane_idcs---------------------
        # lane[idc] = a means idc-th node belongs to the a-th lane
        lane_idcs = []
        for i, idcs in enumerate(node_idcs):
            lane_idcs.append(
                i *
                np.ones(len(idcs), np.int64))  # TODO: what does lane_idcs do?
        lane_idcs = np.concatenate(lane_idcs, 0)

        # **********************************Map Related work***************************
        # =========================================
        # ==============Hdmap Graph Build==========
        # =========================================

        # -------all in all, pairs is for lanes; no pairs is for lanes--------
        # ---------------------------pre and suc for lanes--------------------
        pre_pairs, suc_pairs, left_pairs, right_pairs = [], [], [], []
        for i, lane_id in enumerate(lane_ids):
            lane = lanes[lane_id]

            nbr_ids = lane.predecessors
            if nbr_ids is not None:
                for nbr_id in nbr_ids:
                    if nbr_id in lane_ids:
                        j = lane_ids.index(nbr_id)
                        pre_pairs.append([i, j])

            nbr_ids = lane.successors
            if nbr_ids is not None:
                for nbr_id in nbr_ids:
                    if nbr_id in lane_ids:
                        j = lane_ids.index(nbr_id)
                        suc_pairs.append([i, j])

            nbr_id = lane.l_neighbor_id
            if nbr_id is not None:
                if nbr_id in lane_ids:
                    j = lane_ids.index(nbr_id)
                    left_pairs.append([i, j])

            nbr_id = lane.r_neighbor_id
            if nbr_id is not None:
                if nbr_id in lane_ids:
                    j = lane_ids.index(nbr_id)
                    right_pairs.append([i, j])
        pre_pairs = np.asarray(pre_pairs, np.int16)
        suc_pairs = np.asarray(suc_pairs, np.int16)
        left_pairs = np.asarray(left_pairs, np.int16)
        right_pairs = np.asarray(right_pairs, np.int16)

        # ---------------------------pre and suc for nodes--------------------
        pre, suc = dict(), dict()
        for key in ['u', 'v']:
            pre[key], suc[key] = [], []
        for i, lane_id in enumerate(lane_ids):
            lane = lanes[lane_id]
            idcs = node_idcs[i]

            pre['u'] += idcs[1:]
            pre['v'] += idcs[:-1]
            if lane.predecessors is not None:
                for nbr_id in lane.predecessors:
                    if nbr_id in lane_ids:
                        j = lane_ids.index(nbr_id)
                        pre['u'].append(idcs[0])
                        pre['v'].append(
                            node_idcs[j]
                            [-1])  # v is the pre of u, v is src, u is dest

            suc['u'] += idcs[:-1]
            suc['v'] += idcs[1:]
            if lane.successors is not None:
                for nbr_id in lane.successors:
                    if nbr_id in lane_ids:
                        j = lane_ids.index(nbr_id)
                        suc['u'].append(idcs[-1])
                        suc['v'].append(node_idcs[j][0])

        pre['u'] = np.asarray(pre['u'], dtype=np.int16)
        pre['v'] = np.asarray(pre['v'], dtype=np.int16)
        suc['u'] = np.asarray(suc['u'], dtype=np.int16)
        suc['v'] = np.asarray(suc['v'], dtype=np.int16)

        # -------------------dilate pre and suc: opition 1--------------------
        dilated_pre = [pre]
        dilated_pre += self.dilated_nbrs(pre, num_nodes,
                                         self.config['num_scales'])
        dilated_suc = [suc]
        dilated_suc += self.dilated_nbrs(suc, num_nodes,
                                         self.config['num_scales'])

        # --------------------build nodes left and right graph-----------------
        num_lanes = lane_idcs[-1].item() + 1

        left, right = dict(), dict()

        dist = np.expand_dims(ctrs, axis=1) - np.expand_dims(ctrs, axis=0)
        dist = np.sqrt((dist**2).sum(2))
        hi = np.arange(num_nodes).reshape(-1, 1).repeat(num_nodes,
                                                        axis=1).reshape(-1)
        wi = np.arange(num_nodes).reshape(1, -1).repeat(num_nodes,
                                                        axis=0).reshape(-1)
        row_idcs = np.arange(num_nodes)

        pre_mat = np.zeros((num_lanes, num_lanes))
        pre_mat[pre_pairs[:, 0], pre_pairs[:, 1]] = 1
        suc_mat = np.zeros((num_lanes, num_lanes))
        suc_mat[suc_pairs[:, 0], suc_pairs[:, 1]] = 1

        pairs = left_pairs
        if len(pairs) > 0:
            # construct lane left graph
            mat = np.zeros((num_lanes, num_lanes))
            mat[pairs[:, 0], pairs[:, 1]] = 1
            mat = (
                np.matmul(mat, pre_mat) + np.matmul(mat, suc_mat) + mat
            ) > 0.5  # left lane's suc or pre lane is also self's left lane

            # filter with distance
            left_dist = dist.copy()
            # if lane j is the lane i's left, then all nodes in lane j is the left of any node in lane i
            mask = np.logical_not(mat[lane_idcs[hi], lane_idcs[wi]])
            # set the distance between nodes that has no left relation are very vert large
            left_dist[hi[mask], wi[mask]] = 1e6

            # find the each node's nearest node
            min_dist, min_idcs = left_dist.min(1), left_dist.argmin(1)
            # if nearest node's distance > self.config['cross_dist'], then this node does not have left node
            mask = min_dist < self.config['cross_dist']
            # if the angle between nearest node is too big , the this node does not have left node
            ui = row_idcs[mask]
            vi = min_idcs[mask]
            f1 = feats[ui]
            f2 = feats[vi]
            t1 = np.arctan2(f1[:, 1], f1[:, 0])
            t2 = np.arctan2(f2[:, 1], f2[:, 0])
            dt = np.abs(t1 - t2)
            m = dt > np.pi
            dt[m] = np.abs(dt[m] - 2 * np.pi)
            m = dt < 0.25 * np.pi

            ui = ui[m]
            vi = vi[m]

            left['u'] = ui.astype(
                np.int16)  # u is the idx of node that has left neighbor
            left['v'] = vi.astype(
                np.int16)  # v[i] is the idx of left neighbor of node u[i]
        else:
            left['u'] = np.zeros(0, np.int16)
            left['v'] = np.zeros(0, np.int16)

        pairs = right_pairs
        if len(pairs) > 0:
            mat = np.zeros((num_lanes, num_lanes))
            mat[pairs[:, 0], pairs[:, 1]] = 1
            mat = (np.matmul(mat, pre_mat) + np.matmul(mat, suc_mat) +
                   mat) > 0.5

            right_dist = dist.copy()
            mask = np.logical_not(mat[lane_idcs[hi], lane_idcs[wi]])
            right_dist[hi[mask], wi[mask]] = 1e6

            min_dist, min_idcs = right_dist.min(1), right_dist.argmin(1)
            mask = min_dist < self.config['cross_dist']
            ui = row_idcs[mask]
            vi = min_idcs[mask]
            f1 = feats[ui]
            f2 = feats[vi]
            t1 = np.arctan2(f1[:, 1], f1[:, 0])
            t2 = np.arctan2(f2[:, 1], f2[:, 0])
            dt = np.abs(t1 - t2)
            m = dt > np.pi
            dt[m] = np.abs(dt[m] - 2 * np.pi)
            m = dt < 0.25 * np.pi

            ui = ui[m]
            vi = vi[m]

            right['u'] = ui.astype(np.int16)
            right['v'] = vi.astype(np.int16)
        else:
            right['u'] = np.zeros(0, np.int16)
            right['v'] = np.zeros(0, np.int16)

        graph = dict()
        graph['num_nodes'] = num_nodes
        # map node feats
        graph['ctrs'] = ctrs
        graph['feats'] = feats
        graph['turn'] = np.concatenate(turn, 0)
        graph['control'] = np.concatenate(control, 0)
        graph['intersect'] = np.concatenate(intersect, 0)
        # map node graph
        graph['pre'] = dilated_pre
        graph['suc'] = dilated_suc
        graph['left'] = left
        graph['right'] = right
        # lane pairs
        graph['lane_idcs'] = lane_idcs
        graph['pre_pairs'] = pre_pairs
        graph['suc_pairs'] = suc_pairs
        graph['left_pairs'] = left_pairs
        graph['right_pairs'] = right_pairs

        return graph
예제 #9
0
class ArgoverseForecastDataset(torch.utils.data.Dataset):
    def __init__(self, cfg):
        super().__init__()
        self.am = ArgoverseMap()

        self.axis_range = self.get_map_range(self.am)
        self.city_halluc_bbox_table, self.city_halluc_tableidx_to_laneid_map = self.am.build_hallucinated_lane_bbox_index(
        )
        self.laneid_map = self.process_laneid_map()
        self.vector_map, self.extra_map = self.generate_vector_map()
        # am.draw_lane(city_halluc_tableidx_to_laneid_map['PIT']['494'], 'PIT')
        # self.save_vector_map(self.vector_map)

        self.last_observe = cfg['last_observe']
        ##set root_dir to the correct path to your dataset folder
        self.root_dir = cfg['data_locate']
        self.afl = ArgoverseForecastingLoader(self.root_dir)
        self.map_feature = dict(PIT=[], MIA=[])
        self.city_name, self.center_xy, self.rotate_matrix = dict(), dict(
        ), dict()

    def __len__(self):
        return len(self.afl)

    def __getitem__(self, index):
        # self.am.find_local_lane_polygons()
        self.trajectory, city_name, extra_fields = self.get_trajectory(index)
        traj_id = extra_fields['trajectory_id'][0]
        self.city_name.update({str(traj_id): city_name})
        center_xy = self.trajectory[self.last_observe - 1][1]
        self.center_xy.update({str(traj_id): center_xy})
        trajectory_feature = (self.trajectory -
                              np.array(center_xy).reshape(1, 1, 2)).reshape(
                                  -1, 4)
        rotate_matrix = get_rotate_matrix(
            trajectory_feature[self.last_observe, :])  # rotate coordinate
        self.rotate_matrix.update({str(traj_id): rotate_matrix})
        trajectory_feature = ((trajectory_feature.reshape(-1, 2)).dot(
            rotate_matrix.T)).reshape(-1, 4)
        trajectory_feature = self.normalize_coordinate(
            trajectory_feature, city_name)  # normalize to [-1, 1]

        self.traj_feature = torch.from_numpy(
            np.hstack((
                trajectory_feature,
                extra_fields['TIMESTAMP'].reshape(-1, 1),
                # extra_fields['OBJECT_TYPE'].reshape(-1, 1),
                extra_fields['trajectory_id'].reshape(-1, 1)))).float()
        map_feature_dict = dict(PIT=[], MIA=[])
        for city in ['PIT', 'MIA']:
            for i in range(len(self.vector_map[city])):
                map_feature = (self.vector_map[city][i] -
                               np.array(center_xy).reshape(1, 1, 2)).reshape(
                                   -1, 2)
                map_feature = (map_feature.dot(rotate_matrix.T)).reshape(-1, 4)
                map_feature = self.normalize_coordinate(map_feature, city)
                tmp_tensor = torch.from_numpy(
                    np.hstack((
                        map_feature,
                        self.extra_map[city]['turn_direction'][i],
                        self.extra_map[city]['in_intersection'][i],
                        self.extra_map[city]['has_traffic_control'][i],
                        # self.extra_map[city]['OBJECT_TYPE'][i],
                        self.extra_map[city]['lane_id'][i])))
                map_feature_dict[city].append(tmp_tensor.float())
                # self.map_feature[city] = np.array(self.map_feature[city])
            self.map_feature[city] = map_feature_dict[city]
        self.map_feature['city_name'] = city_name
        return self.traj_feature, self.map_feature

    def get_trajectory(self, index):
        seq_path = self.afl.seq_list[index]
        data = self.afl.get(seq_path).seq_df
        data = data[data['OBJECT_TYPE'] == 'AGENT']
        extra_fields = dict(TIMESTAMP=[], OBJECT_TYPE=[], trajectory_id=[])
        polyline = []
        j = int(str(seq_path).split('/')[-1].split('.')[0])
        flag = True
        city_name = ''
        for _, row in data.iterrows():
            if flag:
                xlast = row['X']
                ylast = row['Y']
                tlast = row['TIMESTAMP']
                city_name = row['CITY_NAME']
                flag = False
                continue
            startpoint = np.array([xlast, ylast])
            endpoint = np.array([row['X'], row['Y']])
            xlast = row['X']
            ylast = row['Y']
            extra_fields['TIMESTAMP'].append(tlast)
            extra_fields['OBJECT_TYPE'].append(0)  # 'AGENT'
            extra_fields['trajectory_id'].append(j)  # 'AGENT'
            tlast = row['TIMESTAMP']
            polyline.append([startpoint, endpoint])
        extra_fields['TIMESTAMP'] = np.array(extra_fields['TIMESTAMP'])
        extra_fields['TIMESTAMP'] -= np.min(
            extra_fields['TIMESTAMP'])  # adjust time stamp
        extra_fields['OBJECT_TYPE'] = np.array(extra_fields['OBJECT_TYPE'])
        extra_fields['trajectory_id'] = np.array(extra_fields['trajectory_id'])
        return np.array(polyline), city_name, extra_fields

    def generate_vector_map(self):
        vector_map = {'PIT': [], 'MIA': []}
        extra_map = {
            'PIT':
            dict(OBJECT_TYPE=[],
                 turn_direction=[],
                 lane_id=[],
                 in_intersection=[],
                 has_traffic_control=[]),
            'MIA':
            dict(OBJECT_TYPE=[],
                 turn_direction=[],
                 lane_id=[],
                 in_intersection=[],
                 has_traffic_control=[])
        }
        polyline = []
        # index = 1
        pbar = tqdm(total=17326)
        pbar.set_description("Generating Vector Map")
        for city_name in ['PIT', 'MIA']:
            for key in self.laneid_map[city_name]:
                pts = self.am.get_lane_segment_polygon(key, city_name)
                turn_str = self.am.get_lane_turn_direction(key, city_name)
                if turn_str == 'LEFT':
                    turn = -1
                elif turn_str == 'RIGHT':
                    turn = 1
                else:
                    turn = 0
                pts_len = pts.shape[0] // 2
                positive_pts = pts[:pts_len, :2]
                negative_pts = pts[pts_len:2 * pts_len, :2]
                polyline.clear()
                for i in range(pts_len - 1):
                    v1 = np.array([positive_pts[i], positive_pts[i + 1]])
                    v2 = np.array([
                        negative_pts[pts_len - 1 - i],
                        negative_pts[pts_len - i - 2]
                    ])
                    polyline.append(v1)
                    polyline.append(v2)
                    # extra_field['table_index'] = self.laneid_map[city_name][key]
                repeat_t = 2 * (pts_len - 1)
                vector_map[city_name].append(np.array(polyline).copy())
                extra_map[city_name]['turn_direction'].append(
                    np.repeat(turn, repeat_t, axis=0).reshape(-1, 1))
                extra_map[city_name]['OBJECT_TYPE'].append(
                    np.repeat(-1, repeat_t, axis=0).reshape(-1, 1))  #HD Map
                extra_map[city_name]['lane_id'].append(
                    np.repeat(int(key), repeat_t, axis=0).reshape(-1, 1))
                extra_map[city_name]['in_intersection'].append(
                    np.repeat(1 *
                              self.am.lane_is_in_intersection(key, city_name),
                              repeat_t,
                              axis=0).reshape(-1, 1))
                extra_map[city_name]['has_traffic_control'].append(
                    np.repeat(1 * self.am.lane_has_traffic_control_measure(
                        key, city_name),
                              repeat_t,
                              axis=0).reshape(-1, 1))
                # if index > 10:
                #     break
                # index = index + 1
                pbar.update(1)
        pbar.close()
        print("Generate Vector Map Successfully!")
        return vector_map, extra_map  #vector_map:list

    def process_laneid_map(self):
        laneid_map = {}
        tmp_map = {}
        tmp1_map = {}
        for key in self.city_halluc_tableidx_to_laneid_map['PIT']:
            tmp_map[self.city_halluc_tableidx_to_laneid_map['PIT'][key]] = key
        laneid_map['PIT'] = tmp_map
        for key in self.city_halluc_tableidx_to_laneid_map['MIA']:
            tmp1_map[self.city_halluc_tableidx_to_laneid_map['MIA'][key]] = key
        laneid_map['MIA'] = tmp1_map
        return laneid_map

    def get_map_range(self, am):
        map_range = dict(PIT={}, MIA={})
        for city_name in ['PIT', 'MIA']:
            poly = am.get_vector_map_lane_polygons(city_name)
            poly_modified = (np.vstack(poly))[:, :2]
            max_coordinate = np.max(poly_modified, axis=0)
            min_coordinate = np.min(poly_modified, axis=0)
            map_range[city_name].update({'max': max_coordinate})
            map_range[city_name].update({'min': min_coordinate})
        return map_range

    def normalize_coordinate(self, array, city_name):
        max_coordinate = self.axis_range[city_name]['max']
        min_coordinate = self.axis_range[city_name]['min']
        array = (10. * (array.reshape(-1, 2)) /
                 (max_coordinate - min_coordinate)).reshape(-1, 4)
        return array

    def save_vector_map(self, vector_map):
        save_path = "./data/vector_map/"
        for city_name in ['PIT', 'MIA']:
            tmp_map = np.vstack(vector_map[city_name]).reshape(-1, 4)
            np.save(save_path + city_name + "_vectormap", tmp_map)
예제 #10
0
def main(data_dir):
    """ 
    """
    fnames = glob.glob(f"{data_dir}/*.csv")
    fnames = [Path(fname).name for fname in fnames]

    am = ArgoverseMap()
    city_graph_dict = build_city_lane_graphs(am)

    for fname in fnames:

        # # very hard cases
        # if int(Path(fname).stem) not in [
        #     166633, 150381,11905, 136010, 49854, 27155]:
        #     continue

        # # hard cases -- ,
        # [174545,119781, 210709, 139445, 11381, 175883, 122703,  166633]: #23333,,124414]:
        #

        csv_fpath = f"{data_dir}/{fname}"
        traj, city_name = get_traj_and_city_name_from_csv(csv_fpath)

        plausible_start_ids = set()
        lane_vote_dict = defaultdict(int)
        for j, pt in enumerate(traj):
            contained_ids = am.get_lane_segments_containing_xy(
                pt[0], pt[1], city_name)
            for id in contained_ids:
                lane_vote_dict[id] += 1
                plausible_start_ids.add(id)

        plausible_start_ids = list(plausible_start_ids)
        plausible_start_ids.sort()
        paths = []
        # START BFS IN ANY PLAUSIBLE LANE ID!
        for start_id in plausible_start_ids:
            paths.extend(
                find_all_paths_from_src(city_graph_dict[city_name],
                                        str(start_id),
                                        max_depth=DFS_MAX_DEPTH))

        paths = convert_str_lists_to_int_lists(paths)
        paths = trim_paths_with_no_inliers(paths, lane_vote_dict)
        paths = remove_repeated_paths(paths)

        path_votes_dict = defaultdict(int)
        for path_id, path in enumerate(paths):
            for id in path:
                path_votes_dict[path_id] += lane_vote_dict[id]

        # find which path has most inliers
        best_path_ids = get_dict_key_with_max_value(path_votes_dict)

        # if they are all tied, take the shortest
        best_path_lengths = [len(paths[id]) for id in best_path_ids]
        min_best_path_length = min(best_path_lengths)
        best_path_ids = [
            id for id in best_path_ids
            if len(paths[id]) == min_best_path_length
        ]

        fig = plt.figure(figsize=(15, 15))
        plt.axis("off")
        ax = fig.add_subplot(111)
        plot_all_nearby_lanes(am, ax, city_name, np.mean(traj[:, 0]),
                              np.mean(traj[:, 1]))

        colors = ["g", "b", "r", "m"]
        # then plot this path
        for best_path_id in best_path_ids:
            color = colors[best_path_id % len(colors)]
            print(
                "Candidate: ",
                paths[best_path_id],
                " with ",
                path_votes_dict[best_path_id],
            )
            for lane_id in paths[best_path_id]:
                polygon_3d = am.get_lane_segment_polygon(lane_id, city_name)
                plot_lane_segment_patch(polygon_3d[:, :2], ax, color=color)
                ax.text(np.mean(polygon_3d[:, 0]), np.mean(polygon_3d[:, 1]),
                        f"{lane_id}")
            # just use one for now
            break

        # draw_lane_ids(plausible_start_ids, am, ax, city_name)

        all_nearby_lane_ids = []
        for path in paths:
            all_nearby_lane_ids.extend(path)
        draw_lane_ids(set(all_nearby_lane_ids), am, ax, city_name)

        draw_traj(traj, ax)
        xmin, ymin, xmax, ymax = compute_point_cloud_bbox(traj)

        WINDOW_RADIUS_MARGIN = 10
        xmin -= WINDOW_RADIUS_MARGIN
        xmax += WINDOW_RADIUS_MARGIN
        ymin -= WINDOW_RADIUS_MARGIN
        ymax += WINDOW_RADIUS_MARGIN
        ax.set_xlim([xmin, xmax])
        ax.set_ylim([ymin, ymax])

        plt.savefig(
            f"/Users/johnlamb/Documents/argoverse-api/temp_files_oracle/{Path(fname).stem}.png"
        )
        plt.close("all")
예제 #11
0
            ]
        ]
        # lines = [ headstart+build_line(line, lane_centerlines_dict, reverse=(not front)) for line in lines]
        # # Label build
        # label_line = crop_line( lines[label], source[-2], target[-1])
        # label_line_distance = line_distance(label_line) + 5

        # #endregion

        # # Distance threshold
        # lines = [ line_distance_crop(line, label_line_distance) for line in lines]

        #region Build intersection polygon

        intersection = Polygon(
            avm.get_lane_segment_polygon(intersection_ids[0], city)[:, 0:2])

        for id in intersection_ids[1:]:
            intersection = intersection.intersection(
                Polygon(avm.get_lane_segment_polygon(id, city)[:, 0:2]))

        polygons = [intersection.exterior.coords]
        #endregion

        #region Find Separation Point

        separation_point = find_separation_point([
            build_line([id], lane_centerlines_dict, reverse=(not front))
            for id in intersection_ids
        ])
        #endregion