예제 #1
0
def get_seed_rule(tried_seed_rules, kernel_set, gl):
    import utils, asp, functs, excps
    seed_model, seed_rule, found_seed = None, None, False
    str_tried_seed_rules = [r.as_string for r in tried_seed_rules]
    for c in kernel_set:
        utils.analyze_use_try([c], [], incremental_search=True)
        (_, pos, negs,
         optimization_score) = asp.ind(kernel_generalization=True,
                                       incremental_search=True)
        (all_solutions, _, _) = asp.ind(find_all_optimal=True,
                                        incremental_search=True,
                                        opt=optimization_score)
        for solution in all_solutions:
            if len(solution) > 1:
                (use_2, _) = functs.split_use_2_3(solution)
                (ok,
                 use_head_body_map) = functs.head_body_use_atoms_filter(use_2)
                if ok:
                    new = utils.form_new_clauses(
                        use_head_body_map, incremental_kernel_search=True)
                    if not new[0].as_string in str_tried_seed_rules:
                        seed_model = use_2
                        seed_rule = new[0]
                        found_seed = True
                        break
                else:
                    msg = 'Found a solution use(i,j) atom with no corresponding use(i,0) atom'
                    raise excps.Use_2_HeadNotAbducedException(msg, gl.logger)
        if found_seed:
            break
    return (seed_model, seed_rule, pos, negs, optimization_score)
예제 #2
0
def generate_all_seed_rules(kernel_set, gl):
    import utils, asp, functs, excps
    generated_seeds, str_generated_seeds = [], []
    for c in kernel_set:
        for seed in generated_seeds:
            utils.analyze_use_try([c], [],
                                  incremental_search=True,
                                  preserve=generated_seeds)
            (_, pos, negs,
             optimization_score) = asp.ind(kernel_generalization=True,
                                           incremental_search=True)
            (all_solutions, _, _) = asp.ind(find_all_optimal=True,
                                            incremental_search=True,
                                            opt=optimization_score)
            for solution in all_solutions:
                if len(solution) > 1:
                    (use_2, _) = functs.split_use_2_3(solution)
                    (ok, use_head_body_map
                     ) = functs.head_body_use_atoms_filter(use_2)
                    if ok:
                        new = utils.form_new_clauses(
                            use_head_body_map, incremental_kernel_search=True)
                        if not new[0].as_string in str_generated_seeds:
                            generated_seeds.append(new[0])
                            str_generated_seeds.append(new[0].as_string)
                    else:
                        msg = 'Found a solution use(i,j) atom with no corresponding use(i,0) atom'
                        raise excps.Use_2_HeadNotAbducedException(
                            msg, gl.logger)
            print('seeds:')
            utils.see(generated_seeds)
    #return (seed_model,seed_rule,pos,negs,optimization_score)
    return generated_seeds
예제 #3
0
def generate_all_seed_rules(kernel_set,gl):
    import utils,asp,functs,excps
    generated_seeds,str_generated_seeds = [],[]
    for c in kernel_set:
        for seed in generated_seeds:
            utils.analyze_use_try([c],[],incremental_search=True,preserve=generated_seeds)  
            (_,pos,negs,optimization_score) = asp.ind(kernel_generalization=True,
                                                      incremental_search=True)  
            (all_solutions,_,_) = asp.ind(find_all_optimal=True,
                                       incremental_search=True,
                                       opt=optimization_score)
            for solution in all_solutions:    
                if len(solution) > 1:
                    (use_2,_) = functs.split_use_2_3(solution)
                    (ok,use_head_body_map) = functs.head_body_use_atoms_filter(use_2)
                    if ok :
                        new = utils.form_new_clauses(use_head_body_map,incremental_kernel_search=True)
                        if not new[0].as_string in str_generated_seeds: 
                            generated_seeds.append(new[0])
                            str_generated_seeds.append(new[0].as_string)
                    else:
                        msg = 'Found a solution use(i,j) atom with no corresponding use(i,0) atom'
                        raise excps.Use_2_HeadNotAbducedException(msg,gl.logger)
            print('seeds:')
            utils.see(generated_seeds)
    #return (seed_model,seed_rule,pos,negs,optimization_score)            
    return generated_seeds    
예제 #4
0
def get_seed_rule(tried_seed_rules,kernel_set,gl):
    import utils,asp,functs,excps
    seed_model,seed_rule,found_seed = None,None,False
    str_tried_seed_rules = [r.as_string for r in tried_seed_rules]
    for c in kernel_set:
        utils.analyze_use_try([c],[],incremental_search=True)  
        (_,pos,negs,optimization_score) = asp.ind(kernel_generalization=True,
                                                      incremental_search=True)  
        (all_solutions,_,_) = asp.ind(find_all_optimal=True,
                                       incremental_search=True,
                                       opt=optimization_score)
        for solution in all_solutions:    
            if len(solution) > 1:
                (use_2,_) = functs.split_use_2_3(solution)
                (ok,use_head_body_map) = functs.head_body_use_atoms_filter(use_2)
                if ok :
                    new = utils.form_new_clauses(use_head_body_map,incremental_kernel_search=True)
                    if not new[0].as_string in str_tried_seed_rules: 
                        seed_model = use_2
                        seed_rule = new[0]
                        found_seed = True
                        break
                else:
                    msg = 'Found a solution use(i,j) atom with no corresponding use(i,0) atom'
                    raise excps.Use_2_HeadNotAbducedException(msg,gl.logger)
        if found_seed:
            break
    return (seed_model,seed_rule,pos,negs,optimization_score)            
예제 #5
0
파일: utils.py 프로젝트: knowlp/ILP-Tools
def incremental_solve(input_program,prior_theory_,**kwargs):
    analyze_use_try(input_program,prior_theory_) 
    can_do_better = True
    # get an initial model:
    if not 'opt' in kwargs:
        (initial_model,optimization) = asp.ind(kernel_generalization=True,
                                               incremental_solve=True,
                                               init_model=True)
    else:
        (initial_model,optimization) = asp.ind(kernel_generalization=True,
                                               incremental_solve=True,
                                               improve_model=True,opt=kwargs['opt'])
    if initial_model != 'UNSATISFIABLE':        
        (solution,use_2,use_3) = form_program(initial_model,incremental_solve=True)
        while can_do_better:
            print('optimization: %s'%(str(optimization)))
            optimization -= 1
            if optimization == 28:
                stop = 'stop' 
            analyze_use_try(solution,prior_theory_)
            (better_model,_) = asp.ind(kernel_generalization=True,
                               incremental_solve=True,
                               improve_model=True,opt=optimization)
            if better_model == 'UNSATISFIABLE':
                # There are two cases here: Either we reached the true optimal
                # theory size, or we took a path (with the initial "seed" model) that
                # cannot be further improved, while in fact better hypotheses
                # are possible. So first try to back-jump to the initial Kernel Set, 
                # to see if we can find a better "seed" model of the current size. 
                # If that fails, then we arrived at the optimum.
                return incremental_solve(input_program,
                                         prior_theory_,
                                         opt=optimization,
                                         last_model=solution,
                                         use2model=use_2,
                                         use3model=use_3) 
                can_do_better = False
            else:
                (solution,use_2,use_3) = form_program(better_model,incremental_solve=True) 
    else:
        solution = kwargs['last_model']
        use_2 = kwargs['use2model']
        use_3 = kwargs['use3model']
    """
    ===================================================
    Remember to update supports for the final solution
    ===================================================
    """        
    print('Found optimal')
    return (solution,use_2,use_3)           
예제 #6
0
파일: utils.py 프로젝트: knowlp/ILP-Tools
def search_kernel_by_subsets(prior_theory_):
    var_kernel = gl.current_var_kernel
    found_solution = False
    while not found_solution: 
        for i in range(6,len(var_kernel)+1):
            i_subsets = itertools.combinations(var_kernel, i)
            subset_counter = 0
            for subset_ in i_subsets: 
                subset = list(subset_)
                print('Searching #%s kernel %s-subset:'%(str(subset_counter),str(i)))
                analyze_use_try(subset,prior_theory_)  
                #analyze_use_try(gl.current_var_kernel,prior_theory_)
                out = asp.ind(kernel_generalization=True,incr_kernel_search=True)
                print(out)
                if out != 'UNSATISFIABLE': 
                    (use_2,use_3) = functs.split_use_2_3(out)
                    (ok,use_head_body_map) = functs.head_body_use_atoms_filter(use_2)
                    if ok :
                        new = form_new_clauses(use_head_body_map)
                    else:
                        msg = 'Found a solution use(i,j) atom with no corresponding use(i,0) atom'
                        raise excps.Use_2_HeadNotAbducedException(msg,gl.logger)
                        found_solution = True
                        subset_counter += 1    
                if found_solution:
                        break
            if not found_solution:
                print('Failed to find a solution')
                sys.exit() 
예제 #7
0
def incremental_search(**kwargs):
    import utils, core, asp, functs, excps
    gl = core.global_vals
    gl.use_dict = {}
    is_new_example = kwargs['is_new_example']
    retained, new, refined = kwargs['retcl'], kwargs['newcl'], kwargs['refcl']
    prior_theory = [x for y in [retained, new, refined] for x in y]
    target_score = gl.current_example_object.positive_count
    if is_new_example:
        utils.generate_kernel(**kwargs)
        # revise the clauses in the prior theory one by one first
        for c in prior_theory:  # TODO
            pass
        var_kernel = gl.current_var_kernel
        # =====================================
        generate_all_seed_rules(var_kernel, gl)
        # =====================================
        found_solution = False
        #current_opt_score = float('Inf')
        #pos_covered = 0
        #negs_covered = float('Inf')
        best_score = 0
        tried_seed_rules = []
        while not found_solution:
            partial_rules, tried_kernel_clauses = [], []
            kernel_loop_counter = 0
            for c in var_kernel:
                if 'terminatedAt' in c.as_string:
                    stop = 'stop'
                tried_kernel_clauses.append(c)
                partial_rules.append(c)
                utils.analyze_use_try(partial_rules, [],
                                      incremental_search=True)
                if kernel_loop_counter == 0:
                    (model, seed_rule, pos, negs,
                     optimization_score) = get_seed_rule(
                         tried_seed_rules, var_kernel, gl)
                    tried_seed_rules.append(seed_rule)

                    print('New seed rules: ')
                    for r in tried_seed_rules:
                        print(r.as_string)
                else:
                    (model, pos, negs,
                     optimization_score) = asp.ind(kernel_generalization=True,
                                                   incremental_search=True)
                partial_rules.extend(tried_seed_rules)
                #(all_solutions,pos,negs) = asp.ind(find_all_optimal=True,
                #                           incremental_search=True,
                #                           opt=optimization_score)
                #new_score = pos - negs - average_size(all_solutions)
                new_score = pos - negs - average_size_(model)
                if new_score > best_score:
                    best_score = new_score
                print('pos,negs,average_size,best_score: ', pos, negs,
                      average_size_(model), best_score)
                #if pos >= pos_covered and negs <= negs_covered:
                if False:
                    pos_covered, negs_covered = pos, negs
                else:
                    # At this point, including any one solution from all_solutions reduces
                    # the current score. Hence, we will use one such solution as a new
                    # addition and search each tried kernel clause again, in order to retrieve
                    # the previous score (or even improve it)
                    #new_addition,added = [],[]
                    """
                    for solution in all_solutions:
                        if len(solution) > 1:
                            (use_2,_) = functs.split_use_2_3(solution)
                            (ok,use_head_body_map) = functs.head_body_use_atoms_filter(use_2)
                            if ok :
                                new = utils.form_new_clauses(use_head_body_map,incremental_kernel_search=True)
                                for n in new:
                                    if not n.as_string in added: 
                                        new_addition.append(n)
                                        added.append(n.as_string) 
                    """

                    (use_2, _) = functs.split_use_2_3(model)
                    new = []
                    if len(use_2) > 1:
                        (ok, use_head_body_map
                         ) = functs.head_body_use_atoms_filter(use_2)
                        if ok:
                            new = utils.form_new_clauses(
                                use_head_body_map,
                                incremental_kernel_search=True)
                        #new_addition.extend(new)

                    old_use_dict, improvedit = gl.use_dict, False
                    for c_ in tried_kernel_clauses:
                        partial_rules_copy = [
                            rule for rule in partial_rules if rule != c
                        ]
                        partial_rules_copy.extend(new)
                        partial_rules_copy.append(c_)
                        utils.analyze_use_try(partial_rules_copy, [],
                                              incremental_search=True)
                        (model_, pos, negs, optimization_score) = asp.ind(
                            kernel_generalization=True,
                            incremental_search=True)
                        #(lastmodel,optimization_score) = asp.ind(kernel_generalization=True,incremental_search=True)
                        #(pos,negs,_,_,_) = get_score(lastmodel,target_score)
                        #(all_solutions_,pos,negs) = asp.ind(find_all_optimal=True,
                        #                                   incremental_search=True,
                        #                                   opt=optimization_score)
                        #if pos >= pos_covered and negs <= negs_covered:
                        new_score = pos - negs - average_size_(model_)
                        if new_score > best_score:
                            #all_solutions = all_solutions_
                            model = model_
                            best_score = new_score
                            improvedit = True
                            print('improved it!')

                            #break
                    if not improvedit:
                        gl.use_dict = old_use_dict
                    """
                    if not improvedit:
                        gl.use_dict = old_use_dict
                    if pos < pos_covered:  
                        pos_covered = pos
                    if negs > negs_covered:
                        negs_covered = negs
                    """
                #if optimization_score != current_opt_score:
                if True:
                    new_partial_rules, added = [], []
                    #for solution in all_solutions:
                    for solution in [model]:
                        if len(solution) > 1:
                            (use_2, use_3) = functs.split_use_2_3(solution)
                            (ok, use_head_body_map
                             ) = functs.head_body_use_atoms_filter(use_2)
                            if ok:
                                new = utils.form_new_clauses(
                                    use_head_body_map,
                                    incremental_kernel_search=True)
                                for c in new:
                                    if not c.as_string in added:
                                        new_partial_rules.append(c)
                                        added.append(c.as_string)
                            else:
                                msg = 'Found a solution use(i,j) atom with no corresponding use(i,0) atom'
                                raise excps.Use_2_HeadNotAbducedException(
                                    msg, gl.logger)
                    partial_rules = new_partial_rules
                    tried_kernel_clauses.extend(partial_rules)
                    stop = 'stop'
                kernel_loop_counter += 1
            if False:
                found_solution = True
        else:
            pass
예제 #8
0
def incremental_search(**kwargs):
    import utils,core,asp,functs,excps
    gl = core.global_vals
    gl.use_dict = {}
    is_new_example = kwargs['is_new_example'] 
    retained,new,refined = kwargs['retcl'],kwargs['newcl'],kwargs['refcl']
    prior_theory = [x for y in [retained,new,refined] for x in y]
    target_score = gl.current_example_object.positive_count
    if is_new_example:
        utils.generate_kernel(**kwargs)
        # revise the clauses in the prior theory one by one first
        for c in prior_theory: # TODO
            pass
        var_kernel = gl.current_var_kernel 
        # =====================================
        generate_all_seed_rules(var_kernel,gl)
        # =====================================
        found_solution = False
        #current_opt_score = float('Inf')
        #pos_covered = 0
        #negs_covered = float('Inf')
        best_score = 0
        tried_seed_rules = []
        while not found_solution: 
            partial_rules,tried_kernel_clauses = [],[]
            kernel_loop_counter = 0
            for c in var_kernel:
                if 'terminatedAt' in c.as_string:
                    stop = 'stop'
                tried_kernel_clauses.append(c)
                partial_rules.append(c)
                utils.analyze_use_try(partial_rules,[],incremental_search=True) 
                if kernel_loop_counter == 0:
                    (model,seed_rule,pos,negs,optimization_score) = get_seed_rule(tried_seed_rules,
                                                                                  var_kernel,gl)
                    tried_seed_rules.append(seed_rule)
                    
                    print('New seed rules: ')
                    for r in tried_seed_rules: 
                        print(r.as_string)
                else:  
                    (model,pos,negs,optimization_score) = asp.ind(kernel_generalization=True,
                                                                  incremental_search=True) 
                partial_rules.extend(tried_seed_rules)           
                #(all_solutions,pos,negs) = asp.ind(find_all_optimal=True,
                #                           incremental_search=True,
                #                           opt=optimization_score)
                #new_score = pos - negs - average_size(all_solutions)
                new_score = pos - negs - average_size_(model)
                if new_score > best_score:
                    best_score = new_score
                print('pos,negs,average_size,best_score: ',pos,negs,average_size_(model),best_score)
                #if pos >= pos_covered and negs <= negs_covered:
                if False:
                    pos_covered,negs_covered = pos,negs
                else:
                    # At this point, including any one solution from all_solutions reduces
                    # the current score. Hence, we will use one such solution as a new 
                    # addition and search each tried kernel clause again, in order to retrieve
                    # the previous score (or even improve it)
                    #new_addition,added = [],[]
                    """
                    for solution in all_solutions:
                        if len(solution) > 1:
                            (use_2,_) = functs.split_use_2_3(solution)
                            (ok,use_head_body_map) = functs.head_body_use_atoms_filter(use_2)
                            if ok :
                                new = utils.form_new_clauses(use_head_body_map,incremental_kernel_search=True)
                                for n in new:
                                    if not n.as_string in added: 
                                        new_addition.append(n)
                                        added.append(n.as_string) 
                    """       
                
                    (use_2,_) = functs.split_use_2_3(model)
                    new = []
                    if len(use_2) > 1:
                        (ok,use_head_body_map) = functs.head_body_use_atoms_filter(use_2)
                        if ok :
                            new = utils.form_new_clauses(use_head_body_map,incremental_kernel_search=True)
                        #new_addition.extend(new)
                              
                    old_use_dict,improvedit = gl.use_dict,False      
                    for c_ in tried_kernel_clauses:
                        partial_rules_copy = [rule for rule in partial_rules if rule != c]
                        partial_rules_copy.extend(new) 
                        partial_rules_copy.append(c_)
                        utils.analyze_use_try(partial_rules_copy,[],incremental_search=True)  
                        (model_,pos,negs,optimization_score) = asp.ind(kernel_generalization=True,
                                                                  incremental_search=True)
                        #(lastmodel,optimization_score) = asp.ind(kernel_generalization=True,incremental_search=True) 
                        #(pos,negs,_,_,_) = get_score(lastmodel,target_score)
                        #(all_solutions_,pos,negs) = asp.ind(find_all_optimal=True,
                        #                                   incremental_search=True,
                        #                                   opt=optimization_score)      
                        #if pos >= pos_covered and negs <= negs_covered:
                        new_score = pos - negs - average_size_(model_) 
                        if new_score > best_score:
                            #all_solutions = all_solutions_ 
                            model = model_
                            best_score = new_score
                            improvedit = True
                            print('improved it!')
                        
                            #break
                    if not improvedit:
                        gl.use_dict = old_use_dict        
                    """
                    if not improvedit:
                        gl.use_dict = old_use_dict
                    if pos < pos_covered:  
                        pos_covered = pos
                    if negs > negs_covered:
                        negs_covered = negs
                    """         
                #if optimization_score != current_opt_score:
                if True:    
                    new_partial_rules,added = [],[]
                    #for solution in all_solutions:
                    for solution in [model]:    
                        if len(solution) > 1:
                            (use_2,use_3) = functs.split_use_2_3(solution)
                            (ok,use_head_body_map) = functs.head_body_use_atoms_filter(use_2)
                            if ok :
                                new = utils.form_new_clauses(use_head_body_map,incremental_kernel_search=True)
                                for c in new:
                                    if not c.as_string in added: 
                                        new_partial_rules.append(c)
                                        added.append(c.as_string)
                            else:
                                msg = 'Found a solution use(i,j) atom with no corresponding use(i,0) atom'
                                raise excps.Use_2_HeadNotAbducedException(msg,gl.logger)
                    partial_rules = new_partial_rules
                    tried_kernel_clauses.extend(partial_rules)
                    stop = 'stop'
                kernel_loop_counter += 1
            if False:
                found_solution = True                
        else:
            pass
예제 #9
0
파일: utils.py 프로젝트: knowlp/ILP-Tools
def incremental_kernel_search(**kwargs):
    gl.use_dict = {}
    is_new_example = kwargs['is_new_example'] 
    retained,new,refined = kwargs['retcl'],kwargs['newcl'],kwargs['refcl']
    prior_theory = [x for y in [retained,new,refined] for x in y]
    positive_count = gl.current_example_object.positive_count
    if is_new_example:
        generate_kernel(**kwargs)
        # revise the clauses in the prior theory one by one first
        for c in prior_theory: # TODO
            pass
        # generate new clauses from the Kernel Set, using iterative deepening
        # on the subsets of the Kernel Set, until a solution is found.
        #------------------------------------------------------------------------------
        # TODO: This strategy can be modified to return approximate solution. This 
        # may be useful in cases where large effort is required to obtain a correct
        # hypothesis, or in cases where a correct hypothesis does not exist (noise).
        # A straightforward strategy towards this is to keep the best hypothesis found
        # within a max_iterations bound.  
        #-------------------------------------------------------------------------------
        var_kernel = gl.current_var_kernel 
        found_solution = False
        already_found = []
        for i in range(1,len(var_kernel)+1):
            i_subsets = itertools.combinations(var_kernel, i)
            for subset_ in i_subsets: 
                subset = list(subset_)
                analyze_use_try(subset,[])  
                out = asp.ind(kernel_generalization=True)
                #==============================================================================
                # Test code. Try to add what you get from each subset to the bk in an effort
                # to further reduce solving time. 
                (use_2,use_3) = functs.split_use_2_3(out)
                (ok,use_head_body_map) = functs.head_body_use_atoms_filter(use_2)
                if ok :
                    new = form_new_clauses(use_head_body_map)
                    if new != []:
                        already_found.extend(new)
                        n = '\n\n'.join(map(lambda x: x.as_string_with_var_types ,already_found))
                        write_to_file(gl.helper, n)
                else:
                    msg = 'Found a solution use(i,j) atom with no corresponding use(i,0) atom'
                    raise excps.Use_2_HeadNotAbducedException(msg,gl.logger)
                #===============================================================================
                pos,negs,score = get_score(out)
                print(str(i)+'-subsets',pos,negs,score)
                if score == positive_count:
                    #------------------
                    print('Found it')
                    sys.exit()
                    #------------------
                    found_solution = True
                    (use_2,use_3) = functs.split_use_2_3(out)
                    (ok,use_head_body_map) = functs.head_body_use_atoms_filter(use_2)
                    if ok :
                        new = form_new_clauses(use_head_body_map)
                    else:
                        msg = 'Found a solution use(i,j) atom with no corresponding use(i,0) atom'
                        raise excps.Use_2_HeadNotAbducedException(msg,gl.logger)
                    (retained,revisable) = functs.filter_retained_(use_3,gl.use_dict)
                    update_support(retained)
                    break # stop searchin i-level subsets
            if found_solution:
                break # stop searching subsets   
        if not found_solution:
            print('unsat at kernel generalization')
            sys.exit()    
    else: # TODO
        pass    
예제 #10
0
파일: utils.py 프로젝트: knowlp/ILP-Tools
def revise(**kwargs):
    hs,scs,cls = kwargs['heuristic_search'],kwargs['set_cover_search'],kwargs['clause_level_search']
    special_search =  scs or cls
    if not special_search:
        gl.use_dict = {}
        is_new_example = kwargs['is_new_example'] 
        debug_mode = kwargs['debug'] if 'debug' in kwargs else False # keep this optional
        retained,new,refined = kwargs['retcl'],kwargs['newcl'],kwargs['refcl'] 
        if debug_mode: 
            import debug_utils
            prior_theory = debug_utils.py_load_from_file() 
        else:
            prior_theory = [retained,new,refined]
            prior_theory_ = [x for y in prior_theory for x in y]
            if is_new_example:
                #retained.extend(refined) # that's a patch because due to a bug previously refined clauses are left out  
                generate_kernel(**kwargs) 
                if gl.runargs["kernel-set-only"]: # We only need to generate a kernel set
                    sys.exit()
                var_kernel = gl.current_var_kernel
                if 'search_subsets' in kwargs:
                    search_kernel_by_subsets(prior_theory_)   
                elif 'incremental_solve' in kwargs and kwargs['incremental_solve']:
                    (solution,use_2,use_3) = incremental_solve(var_kernel,prior_theory_) 
                    
                else: 
                    
                    analyze_use_try(gl.current_var_kernel,prior_theory_)
                    out = asp.ind(kernel_generalization=True)
                    (use_2,use_3) = functs.split_use_2_3(out)
                    (ok,use_head_body_map) = functs.head_body_use_atoms_filter(use_2)
                    if ok :
                        new = form_new_clauses(use_head_body_map)
                    else:
                        msg = 'Found a solution use(i,j) atom with no corresponding use(i,0) atom'
                        raise excps.Use_2_HeadNotAbducedException(msg,gl.logger)
                       
                    
                                   
                (retained,revisable) = functs.filter_retained_(use_3,gl.use_dict)
                update_support(retained)
            else: # re-seeing past example
                #prior_theory = [retained,refined]
                # Only analyze the new clauses generated last. 
                # Update This is messy...Analyze it all, there is no serious overhead
                #analyze_use_try([],new,preserve=[x for y in prior_theory for x in y])
                analyze_use_try([],prior_theory_)
                out = asp.ind(recheck_hist_memory=True)
                (_,use_3) = functs.split_use_2_3(out) # no use/2 here
                (retained,revisable) = functs.filter_retained_(use_3,gl.use_dict) 
            revisable_ = []
            for (clause_index,clause) in revisable:
                #import debug_utils
                #debug_utils.check_on_previous()
                revcl = functs.form_revised_(clause_index,clause,gl.use_dict,use_3)
                revcl = structs.Clause(revcl,gl)
                revisable_.append((clause,revcl))
            incorrects = [inx[0] for inx in revisable_]    
            specialized = []    
            for (incorrect,one_solution) in revisable_ : # need to find optimal refinement
                optimal_ref = one_solution 
                check_prior = [z for z in prior_theory_ if not z in incorrects]
                if search_more(initsol=one_solution,parent=incorrect,prior=check_prior):
                    other_init_solutions = [x[1] for x in revisable_ if x[1] != one_solution]
                    check_prior.extend(other_init_solutions)
                    optimal_ref = get_optimal_refinement(initsol=one_solution,
                                                     parent=incorrect,
                                                     prior=check_prior)
                if isinstance(optimal_ref,list): # then it went through get_optimal_refinement because that returns a list  
                    specialized.extend(optimal_ref)
                else:
                    if isinstance(optimal_ref,structs.Clause): # then it's the initial solution, no support update yet
                        update_support((incorrect,optimal_ref))# this must be passed as a (parent,child) tuple
                        specialized.append(optimal_ref)
    
        #d = dict(zip(incorrects,specialized))
        if is_new_example:
            (n,r,s) = (new,retained,specialized)
        else:
            (n,r,s) = ([],retained,specialized)                    
    
        updateprior(n,r,s)
        return (n,r,s) 
    else:
        if kwargs['set_cover_search']:
            return set_cover_search(**kwargs)
        elif kwargs['heuristic_search']:
            return heuristic_search(**kwargs)
        else:
            #return incremental_kernel_search.incremental_search(**kwargs)
            return incremental_kernel_search(**kwargs)