def main():
    data_file = 'ionosphere.data'

    data = np.genfromtxt(data_file, delimiter=',', dtype='|S10')
    instances = np.array(data[:, :-1], dtype='float')
    labels = np.array(data[:, -1] == 'g', dtype='int')

    n, d = instances.shape
    nlabels = labels.size

    if n != nlabels:
        raise Exception('Expected same no. of feature vector as no. of labels')

    train_data = instances[:200]  # first 200 examples
    train_labels = labels[:200]  # first 200 labels

    test_data = instances[200:]  # example 201 onwards
    test_labels = labels[200:]  # label 201 onwards

    print 'Running Adaboost...'
    adaboost_classifier = run_adaboost(train_data, train_labels, weak_learner)
    print 'Done with Adaboost!\n'

    confusion_mat = evaluate_classifier(adaboost_classifier, test_data,
                                        test_labels)
    print_evaluation_summary(confusion_mat)
예제 #2
0
def main():
    data_file = 'ionosphere.data'

    data = np.genfromtxt(data_file, delimiter=',', dtype='|S10')
    instances = np.array(data[:, :-1], dtype='float')
    labels = np.array(data[:, -1] == 'g', dtype='int')

    n, d = instances.shape
    nlabels = labels.size

    if n != nlabels:
        raise Exception('Expected same no. of feature vector as no. of labels')

    train_data = instances[:200]  # first 200 examples
    train_labels = labels[:200]  # first 200 labels

    test_data = instances[200:]  # example 201 onwards
    test_labels = labels[200:]  # label 201 onwards

    print 'Running Adaboost...'
    adaboost_classifier = run_adaboost(train_data, train_labels, weak_learner)
    print 'Done with Adaboost!\n'

    confusion_mat = evaluate_classifier(adaboost_classifier, test_data,
                                        test_labels)
    print_evaluation_summary(confusion_mat)