def main(): data_file = 'ionosphere.data' data = np.genfromtxt(data_file, delimiter=',', dtype='|S10') instances = np.array(data[:, :-1], dtype='float') labels = np.array(data[:, -1] == 'g', dtype='int') n, d = instances.shape nlabels = labels.size if n != nlabels: raise Exception('Expected same no. of feature vector as no. of labels') train_data = instances[:200] # first 200 examples train_labels = labels[:200] # first 200 labels test_data = instances[200:] # example 201 onwards test_labels = labels[200:] # label 201 onwards print 'Running Adaboost...' adaboost_classifier = run_adaboost(train_data, train_labels, weak_learner) print 'Done with Adaboost!\n' confusion_mat = evaluate_classifier(adaboost_classifier, test_data, test_labels) print_evaluation_summary(confusion_mat)