def is_benchmark_supported(benchmark: Benchmark): """returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list""" # list of input models ePMC does not support if benchmark.is_pta(): # PTAs are not supported by ePMC return False if benchmark.is_ma(): # MAs are not supported by ePMC return False # if benchmark.get_short_property_type() == "S": # # Steady state properties are not supported by ePMC # return False if benchmark.is_prism_inf(): # CTMCs with infinite state-spaces are not supported by ePMC return False # list of properties ePMC supports : unbounded and time-bounded probabilistic reachability; steady-state probability if (not benchmark.is_unbounded_probabilistic_reachability()) and ( not benchmark.is_time_bounded_probabilistic_reachability()) and ( not benchmark.is_steady_state_probability()) and ( not benchmark.is_steady_state_reward()) and ( not benchmark.is_unbounded_expected_reward()): return False return True
def is_benchmark_supported(benchmark: Benchmark, trackId): """returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list""" if benchmark.is_pta() and benchmark.is_prism(): # Some PTAs from Prism are not supported because either # modest can't apply digital clocks semantic due to open constraints, or # modest puts the time as branch-rewards on the models, which are not supported for time-bounded properties if benchmark.get_model_short_name() in [ "firewire-pta", "zeroconf-pta" ]: return "time-bounded" not in benchmark.get_property_type() else: return False if benchmark.is_prism_inf() and benchmark.is_ctmc(): # Storm does not support the CTMCs with infinite state-spaces return False # Time bounded queries on continuous time models can not be solved exactly if trackId in ["correct", "floating-point-correct"]: if "time-bounded" in benchmark.get_property_type() and ( benchmark.is_ma() or benchmark.is_ctmc()): return False return True
def is_benchmark_supported(benchmark: Benchmark): """ Returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list """ # DFTRES only supports Markovian models with purely spurious nondeterminism if not (benchmark.is_dtmc() or benchmark.is_ctmc() or benchmark.is_ma()): return False # User-defined functions (the "call" JANI operator) are not supported if "functions" in benchmark.get_jani_features(): return False # Only time-accumulating or time-instant reward queries supported_queries = [ "prob-reach", "prob-reach-time-bounded", "steady-state-prob" ] if not benchmark.get_property_type() in supported_queries: return False # No support for real variables yet real_vars = [ v for v in benchmark.load_jani_file()["variables"] \ if v["type"] == "real"] if 0 < len(real_vars): return False # Some MAs have not-obviously-spurious nondeterminism and can't be simulated unsupported_models = [ "bitcoin-attack", ] # The arithmetic operations of some models aren't supported unsupported_models += [ "majority", "philosophers", "speed-ind", "dpm", "readers-writers" ] if benchmark.get_model_short_name() in unsupported_models: return False # All other models are supported if ONLY_QCOMP_2020_BENCHMARKS: return benchmark.get_identifier() in QComp2020_benchmarks else: return True
def get_invocations(benchmark : Benchmark): """ Returns a list of invocations that invoke the tool for the given benchmark. It can be assumed that the current directory is the directory from which execute_invocations.py is executed. For QCOMP 2020, this should return a list of invocations for all tracks in which the tool can take part. For each track an invocation with default settings has to be provided and in addition, an optimized setting (e.g., the fastest engine and/or solution technique for this benchmark) can be specified. Only information about the model type, the property type and the state space size are allowed to be used to tweak the parameters. If this benchmark is not supported, an empty list has to be returned. """ if not is_benchmark_supported(benchmark): return [] short = benchmark.get_model_short_name() prop = benchmark.get_property_name() prop_type = benchmark.get_short_property_type() params = benchmark.get_parameter_values_string() instance = short + "." + params size = benchmark.get_num_states_tweak() invocations = [] benchmark_settings = "" if benchmark.get_open_parameter_def_string() != "": benchmark_settings += "-E " + benchmark.get_open_parameter_def_string() + " " benchmark_settings += "--props " + benchmark.get_property_name() default_base = "mcsta/modest mcsta " + benchmark.get_janifilename() + " " + benchmark_settings + " -O out.txt Minimal --unsafe --es" specific_base = default_base + tweak_memory(benchmark) # specific settings default_base += " -S Memory" # # Track "floating-point-correct" # skip = False precision = "0" default_cmd = default_base + " --no-partial-results" specific_cmd = specific_base + " --no-partial-results" if prop_type == "S" or (benchmark.is_ma() or benchmark.is_ctmc()) and benchmark.is_time_bounded_probabilistic_reachability(): # long-run average or time-bounded on MA/CTMC: no fp-exact algorithm available skip = True elif prop_type == "P": # probabilistic reachability: try value iteration until fp-fixpoint default_cmd += " --p0 --p1 --epsilon 0 --absolute-epsilon" specific_cmd += " --p0 --p1 --epsilon 0 --absolute-epsilon" elif prop_type == "E": # expected reward: try value iteration until fp-fixpoint default_cmd += " --epsilon 0 --absolute-epsilon" specific_cmd += " --epsilon 0 --absolute-epsilon" elif prop_type == "Pb": # state elimination is fp-exact default_cmd += " --reward-bounded-alg StateElimination" if "-S Memory" in specific_cmd: specific_cmd += " --reward-bounded-alg StateElimination" else: specific_cmd += " --epsilon 0 --absolute-epsilon" if not skip: add_invocations(invocations, "floating-point-correct", default_cmd, tweak(benchmark, specific_cmd)) # # Track "epsilon-correct" # skip = False precision = "1e-6" default_cmd = default_base + " --no-partial-results" specific_cmd = specific_base + " --no-partial-results" if prop_type == "S": # long-run average: default is the sound algorithm based on value iteration default_cmd += " --width $PRECISION --relative-width" specific_cmd += " --width $PRECISION --relative-width" elif (benchmark.is_ma() or benchmark.is_ctmc()) and benchmark.is_time_bounded_probabilistic_reachability(): # time-bounded probability for CTMC and MA: default is sound Unif+ default_cmd += " --width $PRECISION --relative-width" specific_cmd += " --width $PRECISION --relative-width" elif benchmark.is_pta() and prop_type == "Pb": # time-bounded reachability for PTA: state elimination recommended default_cmd += " --reward-bounded-alg StateElimination" if "-S Memory" in specific_cmd: specific_cmd += " --reward-bounded-alg StateElimination" else: specific_cmd += " --alg IntervalIteration --width $PRECISION --relative-width" elif prop_type == "Pb": # reward-bounded probability: default is unsound VI, so need to change to II (SVI and OVI not yet implemented for this case) default_cmd += " --alg IntervalIteration --width $PRECISION --relative-width" specific_cmd += " --alg IntervalIteration --width $PRECISION --relative-width" else: # unbounded probability or expected reward: default is unsound VI, so need to change to OVI default_cmd += " --alg OptimisticValueIteration --epsilon $PRECISION --width $PRECISION --relative-width" specific_cmd += " --alg OptimisticValueIteration --epsilon $PRECISION --width $PRECISION --relative-width" if prop_type == "P" and benchmark.is_dtmc() or benchmark.is_ctmc(): # for unbounded probabilities on DTMC and CTMC: use 0/1 preprocessing default_cmd += " --p0 --p1" specific_cmd += " --p0 --p1" if not skip: add_invocations(invocations, "epsilon-correct", default_cmd.replace("$PRECISION", precision), tweak(benchmark, specific_cmd).replace("$PRECISION", precision)) # # Track "probably-epsilon-correct" # skip = False precision = "5e-2" if not skip: add_invocations(invocations, "probably-epsilon-correct", default_cmd.replace("$PRECISION", precision), tweak(benchmark, specific_cmd).replace("$PRECISION", precision)) # # Track "often-epsilon-correct" # skip = False precision = "1e-3" default_cmd = default_base + " --no-partial-results" specific_cmd = specific_base + " --no-partial-results" if prop_type == "S": # long-run average: default is the sound algorithm based on value iteration default_cmd += " --width $PRECISION --relative-width" specific_cmd += " --width $PRECISION --relative-width" elif (benchmark.is_ma() or benchmark.is_ctmc()) and benchmark.is_time_bounded_probabilistic_reachability(): # time-bounded probability for CTMC and MA: default is sound Unif+ default_cmd += " --width $PRECISION --relative-width" specific_cmd += " --width $PRECISION --relative-width" elif benchmark.is_pta() and prop_type == "Pb": # time-bounded reachability for PTA: state elimination recommended default_cmd += " --reward-bounded-alg StateElimination" if "-S Memory" in specific_cmd: specific_cmd += " --reward-bounded-alg StateElimination" else: specific_cmd += " --alg IntervalIteration --width $PRECISION --relative-width" elif prop_type == "Pb": # reward-bounded probability: default is unsound VI, which is okay here pass else: # unbounded probability or expected reward: default is unsound VI, which is okay here if prop_type == "P" and benchmark.is_dtmc() or benchmark.is_ctmc(): # for unbounded probabilities on DTMC and CTMC: use 0/1 preprocessing default_cmd += " --p0 --p1" specific_cmd += " --p0 --p1" if not skip: add_invocations(invocations, "often-epsilon-correct", default_cmd.replace("$PRECISION", precision), tweak(benchmark, specific_cmd).replace("$PRECISION", precision)) # # Track "often-epsilon-correct-10-min" # skip = False precision = "0" # so we just run for the full 10 minutes (or until we get an exact result) default_cmd = default_base specific_cmd = specific_base if prop_type == "S": skip = True elif (benchmark.is_ma() or benchmark.is_ctmc()) and benchmark.is_time_bounded_probabilistic_reachability(): default_cmd += " --width 0" specific_cmd += " --width 0" elif prop_type == "Pb": # reward-bounded reachability for DTMC, MDP, and PTA default_cmd += " --reward-bounded-alg StateElimination" if "-S Memory" in specific_cmd: specific_cmd += " --reward-bounded-alg StateElimination" else: specific_cmd += " --epsilon 0" else: default_cmd += " --epsilon 0" specific_cmd += " --epsilon 0" if prop_type == "P" and benchmark.is_dtmc() or benchmark.is_ctmc(): # for unbounded probabilities on DTMC and CTMC: use 0/1 preprocessing default_cmd += " --p0 --p1" specific_cmd += " --p0 --p1" if not skip: add_invocations(invocations, "often-epsilon-correct-10-min", default_cmd, tweak(benchmark, specific_cmd)) # # Done # return invocations