예제 #1
0
def is_benchmark_supported(benchmark : Benchmark):
    """returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list"""

    if benchmark.is_pta() and benchmark.is_prism():
        # The PTAs from Prism are not supported because either
        # modest can't apply digital clocks semantic due to open constraints, or
        # modest puts branch-rewards on the models (these are not supported by Storm)
        return False
    if benchmark.is_prism_inf() and benchmark.is_ctmc():
        # Storm does not support the CTMCs with infinite state-spaces
        return False

    # do not include models with state space largern than 50 Mio
    if benchmark.get_num_states_tweak() is not None and benchmark.get_num_states_tweak() > 50000000:
        return False

    # do not select dfts with a file parameter "R" that is set to true
    if benchmark.is_galileo():
        for p in benchmark.get_file_parameters():
            if p["name"] == "R" and p["value"] == True:
                return False

    if benchmark.is_ctmc():
        return True

    return False
예제 #2
0
파일: tool.py 프로젝트: MKlauck/qcomp2020
def is_benchmark_supported(benchmark: Benchmark):
    """returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list"""
    if not benchmark.is_prism() or benchmark.is_prism_inf():
        return False
    if benchmark.get_model_type() not in {"ctmc", "dtmc", "mdp"}:
        return False
    if benchmark.get_property_type() not in {
            "prob-reach", "prob-reach-step-bounded"
    }:
        return False
    if (benchmark.is_ctmc()
            and benchmark.get_property_type() == "prob-reach-step-bounded"):
        return False
    return True
예제 #3
0
파일: tool.py 프로젝트: MKlauck/qcomp2020
def is_benchmark_supported(benchmark: Benchmark):
    """returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list"""

    # Check for unsupported input languages: everything but PRISM currently
    if benchmark.is_prism():
        # Temporarily disable pacman - very slow
        #         if benchmark.get_model_short_name() == "pacman":
        #             return False
        # Check for unsupported property types: just reward bounded currently
        if benchmark.is_reward_bounded_probabilistic_reachability(
        ) or benchmark.is_reward_bounded_expected_reward():
            return False


#        print("{},{},{},{}".format(benchmark.get_identifier(),benchmark.get_model_type(),benchmark.get_property_type(),benchmark.get_max_num_states()))
        return True
    else:
        return False
예제 #4
0
파일: tool.py 프로젝트: MKlauck/qcomp2020
def is_benchmark_supported(benchmark: Benchmark, trackId):
    """returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list"""

    if benchmark.is_pta() and benchmark.is_prism():
        # Some PTAs from Prism are not supported because either
        # modest can't apply digital clocks semantic due to open constraints, or
        # modest puts the time as branch-rewards on the models, which are not supported for time-bounded properties
        if benchmark.get_model_short_name() in [
                "firewire-pta", "zeroconf-pta"
        ]:
            return "time-bounded" not in benchmark.get_property_type()
        else:
            return False
    if benchmark.is_prism_inf() and benchmark.is_ctmc():
        # Storm does not support the CTMCs with infinite state-spaces
        return False

    # Time bounded queries on continuous time models can not be solved exactly
    if trackId in ["correct", "floating-point-correct"]:
        if "time-bounded" in benchmark.get_property_type() and (
                benchmark.is_ma() or benchmark.is_ctmc()):
            return False
    return True
예제 #5
0
파일: tool.py 프로젝트: MKlauck/qcomp2020
def get_invocations(benchmark: Benchmark):
    """
    Returns a list of invocations that invoke the tool for the given benchmark.
    It can be assumed that the current directory is the directory from which execute_invocations.py is executed.
    For QCOMP 2020, this should return a list of invocations for all tracks in which the tool can take part. For each track an invocation with default settings has to be provided and in addition, an optimized setting (e.g., the fastest engine and/or solution technique for this benchmark) can be specified. Only information about the model type, the property type and the state space size are allowed to be used to tweak the parameters.
   
    If this benchmark is not supported, an empty list has to be returned.
    """
    # decide whether we want to use storm-dft (which supports galileo fault trees without repair)
    use_storm_dft = False
    if benchmark.is_galileo():
        has_repair = False
        for p in benchmark.get_file_parameters():
            if p["name"] == "R" and p["value"] == True:
                has_repair = True
        if not has_repair:
            use_storm_dft = True

    # Gather the precision settings for the corresponding track
    track_settings = dict()
    track_comments = dict()
    track_settings['correct'] = ' --exact '
    track_comments['correct'] = 'Use exact arithmethic with rationals.'
    track_settings[
        'floating-point-correct'] = ' --exact floats --general:precision 1e-20 '
    track_comments[
        'floating-point-correct'] = 'Use exact arithmethic with floats. The precision needs to be set to increase precision when printing the result to stdout '
    track_settings['epsilon-correct'] = ' --sound --precision 1e-6 '
    track_comments['epsilon-correct'] = 'Use sound model checking methods.'
    track_settings['probably-epsilon-correct'] = ' --sound --precision 5e-2 '
    track_comments['probably-epsilon-correct'] = 'Use sound model checking.'
    track_settings['often-epsilon-correct'] = ' --timebounded:precision 1e-3 '
    track_comments[
        'often-epsilon-correct'] = 'Use potentially unsound but fast solution methods. Use default precision (1e-6) everywhere except for timebounded queries, for which solution methods give epsilon guarantees.'
    track_settings[
        'often-epsilon-correct-10-min'] = ' --signal-timeout 60 --general:precision 1e-12 --gmm++:precision 1e-12 --native:precision 1e-12 --minmax:precision 1e-12 --timebounded:precision 1e-6 ' + (
            "" if use_storm_dft else "--lra:precision 1e-12 ")
    track_comments[
        'often-epsilon-correct-10-min'] = 'Only force termination 60 seconds after receiving SIGTERM. Use potentially unsound but fast solution methods. Take a high precision to make sure that we make use of the 10 minutes. Time bounded queries can not be answered that precisely due to numerics.'

    invocations = []

    for trackId in track_settings:

        if not is_benchmark_supported(benchmark, trackId):
            continue
        # Check whether this is a job for storm-dft
        if use_storm_dft:
            # We now have to obtain the correct property.
            # Unfortunately, this is necessary because the gallileo files do not contain any information of the property
            # The code below might easily break if we pick a different benchmark set
            benchmark_settings = "--dftfile {} ".format(
                benchmark.get_galileo_filename())
            if benchmark.is_time_bounded_probabilistic_reachability():
                time_bound = 1
                for p in benchmark.get_parameters():
                    if p["name"] == "TIME_BOUND":
                        time_bound = p["value"]
                benchmark_settings += "--timebound {} --max".format(time_bound)
            elif benchmark.is_unbounded_expected_time():
                benchmark_settings += "--expectedtime --min"

            benchmark_settings += track_settings[trackId]
            default_inv = Invocation()
            default_inv.track_id = trackId
            default_inv.identifier = "default"
            default_inv.note = "Use Storm-dft with the requested property. " + track_comments[
                trackId]
            default_inv.add_command(
                "~/storm/build/bin/storm-dft {}".format(benchmark_settings))
            invocations.append(default_inv)
            continue  # with next trackId

        # Gather options that are needed for this particular benchmark for any invocation of Storm
        preprocessing_steps = []
        benchmark_settings = ""
        if (benchmark.is_prism()
                or benchmark.is_prism_ma()) and not benchmark.is_pta():
            benchmark_settings = "--prism {} --prop {} {}".format(
                benchmark.get_prism_program_filename(),
                benchmark.get_prism_property_filename(),
                benchmark.get_property_name())
            if benchmark.get_open_parameter_def_string() != "":
                benchmark_settings += " --constants {}".format(
                    benchmark.get_open_parameter_def_string())
            if benchmark.is_ctmc():
                benchmark_settings += " --prismcompat"
        else:
            # For jani input, it might be the case that preprocessing is necessary using moconv
            moconv_options = []
            features = benchmark.get_jani_features()
            for f in [
                    "arrays", "derived-operators", "functions",
                    "state-exit-rewards"
            ]:
                if f in features: features.remove(f)
            if "nondet-selection" in features:
                moconv_options.append("--remove-disc-nondet")
                features.remove("nondet-selection")
            if len(features) != 0:
                print("Unsupported jani feature(s): {}".format(features))
            if benchmark.is_pta():
                moconv_options.append("--digital-clocks")
                if benchmark.get_model_short_name() == "wlan-large":
                    # This is actually a stochastic timed automaton. Distributions have to be unrolled first
                    moconv_options.append(" --unroll-distrs")
            if len(moconv_options) != 0:
                preprocessing_steps.append(
                    "~/modest/modest convert {} {} --output {} --overwrite".
                    format(benchmark.get_janifilename(),
                           " ".join(moconv_options),
                           "converted_" + benchmark.get_janifilename()))
                if benchmark.get_open_parameter_def_string() != "":
                    preprocessing_steps[-1] += " --experiment {}".format(
                        benchmark.get_open_parameter_def_string())
                benchmark_settings = "--jani {} --janiproperty {}".format(
                    "converted_" + benchmark.get_janifilename(),
                    benchmark.get_property_name())
            else:
                benchmark_settings = "--jani {} --janiproperty {}".format(
                    benchmark.get_janifilename(),
                    benchmark.get_property_name())
                if benchmark.get_open_parameter_def_string() != "":
                    benchmark_settings += " --constants {}".format(
                        benchmark.get_open_parameter_def_string())

        benchmark_settings += track_settings[trackId]
        benchmark_settings += " --ddlib sylvan --sylvan:maxmem 6114 --sylvan:threads 4"
        benchmark_comment = "Use sylvan as library for Dds, restricted to 6GB memory and 4 threads. " + track_comments[
            trackId]

        # default settings
        default_inv = Invocation()
        default_inv.identifier = "default"
        # default_inv.note = benchmark_comment
        default_inv.track_id = trackId
        for prep in preprocessing_steps:
            default_inv.add_command(prep)
        default_inv.add_command(
            "~/storm/build/bin/storm {}".format(benchmark_settings))
        invocations.append(default_inv)

        # specific settings
        # Storm-static selects for each benchmark the best config among sparse, hybrid, ddbisim and exact (same for all tracks)
        # We obtained this via previous experiments:
        best_configs = dict()
        best_configs["beb.4-8-7.LineSeized"] = "hybrid"
        best_configs["beb.5-16-15.LineSeized"] = "N/A"
        best_configs["bitcoin-attack.20-6.P_MWinMax"] = "ddbisim"
        best_configs["bluetooth.1.time"] = "ddbisim"
        best_configs["cabinets.3-2-true.Unavailability"] = "sparse"
        best_configs["cabinets.3-2-true.Unreliability"] = "ddbisim"
        best_configs["cluster.128-2000-20.premium_steady"] = "sparse"
        best_configs["cluster.128-2000-20.qos1"] = "hybrid"
        best_configs["cluster.64-2000-20.below_min"] = "hybrid"
        best_configs["consensus.4-4.disagree"] = "sparse"
        best_configs["consensus.4-4.steps_min"] = "sparse"
        best_configs["consensus.6-2.disagree"] = "ddbisim"
        best_configs["consensus.6-2.steps_min"] = "ddbisim"
        best_configs["coupon.15-4-5.collect_all_bounded"] = "ddbisim"
        best_configs["coupon.15-4-5.exp_draws"] = "ddbisim"
        best_configs["coupon.9-4-5.collect_all_bounded"] = "ddbisim"
        best_configs["coupon.9-4-5.exp_draws"] = "ddbisim"
        best_configs["crowds.5-20.positive"] = "ddbisim"
        best_configs["crowds.6-20.positive"] = "ddbisim"
        best_configs["csma.3-4.all_before_max"] = "hybrid"
        best_configs["csma.3-4.time_max"] = "hybrid"
        best_configs["csma.4-2.all_before_max"] = "hybrid"
        best_configs["csma.4-2.time_max"] = "hybrid"
        best_configs["dpm.4-8-5.PmaxQueuesFullBound"] = "N/A"
        best_configs["dpm.6-6-5.PminQueue1Full"] = "sparse"
        best_configs["eajs.5-250-11.ExpUtil"] = "ddbisim"
        best_configs["eajs.6-300-13.ExpUtil"] = "ddbisim"
        best_configs["echoring.100.MaxOffline1"] = "sparse"
        best_configs["egl.10-2.messagesB"] = "ddbisim"
        best_configs["egl.10-2.unfairA"] = "hybrid"
        best_configs["egl.10-8.messagesB"] = "ddbisim"
        best_configs["egl.10-8.unfairA"] = "hybrid"
        best_configs["elevators.b-11-9.goal"] = "sparse"
        best_configs["embedded.8-12.actuators"] = "exact"
        best_configs["embedded.8-12.up_time"] = "exact"
        best_configs["exploding-blocksworld.10.goal"] = "N/A"
        best_configs["firewire-pta.30-5000.eventually"] = "sparse"
        best_configs["firewire.false-36-800.deadline"] = "ddbisim"
        best_configs["fms.8.productivity"] = "N/A"
        best_configs["ftpp.2-2-true.Unavailability"] = "N/A"
        best_configs["ftwc.8-5.TimeMax"] = "sparse"
        best_configs["ftwc.8-5.TimeMin"] = "sparse"
        best_configs["haddad-monmege.100-0.7.exp_steps"] = "exact"
        best_configs["haddad-monmege.100-0.7.target"] = "exact"
        best_configs["hecs.false-1-1.Unreliability"] = "sparse"
        best_configs["hecs.false-2-2.Unreliability"] = "sparse"
        best_configs["hecs.false-3-2.Unreliability"] = "N/A"
        best_configs["herman.15.steps"] = "ddbisim"
        best_configs["kanban.5.throughput"] = "hybrid"
        best_configs["majority.2100.change_state"] = "sparse"
        best_configs["mapk_cascade.4-30.activated_time"] = "sparse"
        best_configs["mapk_cascade.4-30.reactions"] = "hybrid"
        best_configs["nand.40-4.reliable"] = "hybrid"
        best_configs["nand.60-4.reliable"] = "hybrid"
        best_configs[
            "oscillators.8-10-0.1-1-0.1-1.0.power_consumption"] = "sparse"
        best_configs["oscillators.8-10-0.1-1-0.1-1.0.time_to_synch"] = "sparse"
        best_configs["pacman.100.crash"] = "hybrid"
        best_configs["pacman.60.crash"] = "hybrid"
        best_configs["philosophers.16-1.MaxPrReachDeadlock"] = "hybrid"
        best_configs["philosophers.16-1.MaxPrReachDeadlockTB"] = "hybrid"
        best_configs["philosophers.16-1.MinExpTimeDeadlock"] = "hybrid"
        best_configs["philosophers.20-1.MaxPrReachDeadlock"] = "hybrid"
        best_configs["philosophers.20-1.MaxPrReachDeadlockTB"] = "N/A"
        best_configs["philosophers.20-1.MinExpTimeDeadlock"] = "N/A"
        best_configs["pnueli-zuck.10.live"] = "hybrid"
        best_configs["pnueli-zuck.5.live"] = "hybrid"
        best_configs["polling.18-16.s1_before_s2"] = "hybrid"
        best_configs["rabin.10.live"] = "hybrid"
        best_configs["readers-writers.40.exp_time_many_requests"] = "sparse"
        best_configs["readers-writers.40.prtb_many_requests"] = "hybrid"
        best_configs["rectangle-tireworld.11.goal"] = "exact"
        best_configs["resource-gathering.1300-100-100.expgold"] = "ddbisim"
        best_configs["resource-gathering.1300-100-100.expsteps"] = "sparse"
        best_configs["resource-gathering.1300-100-100.prgoldgem"] = "hybrid"
        best_configs["sms.3-true.Unavailability"] = "hybrid"
        best_configs["sms.3-true.Unreliability"] = "sparse"
        best_configs["speed-ind.2100.change_state"] = "sparse"
        best_configs["stream.1000.exp_buffertime"] = "sparse"
        best_configs["stream.1000.pr_underrun"] = "sparse"
        best_configs["stream.1000.pr_underrun_tb"] = "sparse"
        best_configs["tireworld.45.goal"] = "N/A"
        best_configs["triangle-tireworld.441.goal"] = "N/A"
        best_configs["vgs.5-10000.MaxPrReachFailedTB"] = "N/A"
        best_configs["vgs.5-10000.MinExpTimeFailed"] = "N/A"
        best_configs["wlan-large.2.E_or"] = "sparse"
        best_configs["wlan-large.2.P_max"] = "sparse"
        best_configs["wlan.4-0.cost_min"] = "hybrid"
        best_configs["wlan.4-0.sent"] = "hybrid"
        best_configs["wlan.5-0.cost_min"] = "hybrid"
        best_configs["wlan.5-0.sent"] = "hybrid"
        best_configs["wlan.6-0.cost_min"] = "hybrid"
        best_configs["wlan.6-0.sent"] = "hybrid"
        best_configs["zenotravel.4-2-2.goal"] = "hybrid"
        best_configs["zeroconf-pta.200.incorrect"] = "exact"
        best_configs["zeroconf.1000-8-false.correct_max"] = "sparse"
        best_configs["zeroconf.1000-8-false.correct_min"] = "sparse"

        try:
            config = best_configs[benchmark.get_identifier()]
        except KeyError:
            print(
                "Unable to find best config for {}. Is this a new benchmark?".
                format(benchmark.get_identifier()))
            config = "N/A"

        if config in ["N/A", "sparse"]:
            # This is like the default config and thus does not need a rerun
            continue
        elif config == "hybrid":
            benchmark_settings += " --engine hybrid"
        elif config == "ddbisim":
            benchmark_settings += " --engine dd-to-sparse --bisimulation"
        elif config == "exact":
            if trackId in ["correct", "floating-point-correct"]:
                benchmark_settings += " --engine sparse"
            else:
                benchmark_settings += " --engine sparse --exact"
        else:
            assert False, "Unhandled config"

        specific_inv = Invocation()
        specific_inv.identifier = "specific"
        specific_inv.track_id = trackId
        for prep in preprocessing_steps:
            specific_inv.add_command(prep)
        specific_inv.add_command(
            "~/storm/build/bin/storm {}".format(benchmark_settings))
        invocations.append(specific_inv)

    return invocations
예제 #6
0
def get_invocations(benchmark : Benchmark):
    """
    Returns a list of invocations that invoke the tool for the given benchmark.
    It can be assumed that the current directory is the directory from which execute_invocations.py is executed.
    For QCOMP 2020, this should return a list of invocations for all tracks in which the tool can take part. For each track an invocation with default settings has to be provided and in addition, an optimized setting (e.g., the fastest engine and/or solution technique for this benchmark) can be specified. Only information about the model type, the property type and the state space size are allowed to be used to tweak the parameters.
   
    If this benchmark is not supported, an empty list has to be returned.
    """

    if not is_benchmark_supported(benchmark):
        return []

    # Gather options that are needed for this particular benchmark for any invocation of Storm
    preprocessing_steps = []
    benchmark_settings = ""
    if benchmark.is_prism() or benchmark.is_prism_ma() and not benchmark.is_pta():
        benchmark_settings = "{} {}".format(benchmark.get_prism_program_filename(), benchmark.get_prism_property_filename(), benchmark.get_property_name())
        if benchmark.get_open_parameter_def_string() != "":
            benchmark_settings += " -const {}".format(benchmark.get_open_parameter_def_string())
    else:
        # For jani input, it might be the case that preprocessing is necessary using moconv
        moconv_options = []
        features = benchmark.get_jani_features()
        for f in ["arrays", "derived-operators", "functions", "state-exit-rewards"]:
            if f in features: features.remove(f)
        if "nondet-selection" in features:
            moconv_options.append("--remove-disc-nondet")
            features.remove("nondet-selection")
        if len(features) != 0:
            print("Unsupported jani feature(s): {}".format(features))
        if benchmark.is_pta():
            moconv_options.append("--digital-clocks")

        if len(moconv_options) != 0:
            preprocessing_steps.append("mono /modest/moconv.exe {} {} --output {} --overwrite".format(benchmark.get_janifilename(), " ".join(moconv_options), "converted_" + benchmark.get_janifilename()))
            if benchmark.get_open_parameter_def_string() != "":
                preprocessing_steps[-1] += " --experiment {}".format(benchmark.get_open_parameter_def_string())
            benchmark_settings = "--jani {} --janiproperty {}".format("converted_" + benchmark.get_janifilename(), benchmark.get_property_name())
        else:
            benchmark_settings = "--jani {} --janiproperty {}".format(benchmark.get_janifilename(), benchmark.get_property_name())
            if benchmark.get_open_parameter_def_string() != "":
                benchmark_settings += " --constants {}".format(benchmark.get_open_parameter_def_string())

    invocations = []


    # default settings
    default_inv = Invocation()
    default_inv.identifier = "default"
    default_inv.track_id = "epsilon-correct"
    if len(preprocessing_steps) != 0:
        for prep in preprocessing_steps:
            default_inv.add_command(prep)
    default_inv.add_command("~/stamina/stamina/bin/stamina {}".format(benchmark_settings))
    invocations.append(default_inv)

    # specific settings                     !!!!only information about model type, property type and state space size via benchmark.get_num_states_tweak() may be used for tweaking
    specific_inv = Invocation()
    specific_inv.identifier = "specific"
    specific_inv.track_id = "epsilon-correct"
    if len(preprocessing_steps) != 0:
        for prep in preprocessing_steps:
            specific_inv.add_command(prep)
    specific_inv.add_command("~/stamina/stamina/bin/stamina {}".format(benchmark_settings))
    invocations.append(specific_inv)

    #### TODO: add default and specific invocations for other track_ids 'correct', 'probably-epsilon-correct', 'often-epsilon-correct', 'often-epsilon-correct-10-min'
    ### remember that different tracks have different precisions

    return invocations
예제 #7
0
파일: tool.py 프로젝트: MKlauck/qcomp2020
def get_invocations(benchmark: Benchmark):
    """
    Returns a list of invocations that invoke the tool for the given benchmark.
    It can be assumed that the current directory is the directory from which execute_invocations.py is executed.
    For QCOMP 2020, this should return a list of invocations for all tracks in which the tool can take part. For each track an invocation with default settings has to be provided and in addition, an optimized setting (e.g., the fastest engine and/or solution technique for this benchmark) can be specified. Only information about the model type, the property type and the state space size are allowed to be used to tweak the parameters.
   
    If this benchmark is not supported, an empty list has to be returned.
    """

    if not is_benchmark_supported(benchmark):
        return []

    # Gather options that are needed for this particular benchmark for any invocation of Storm
    preprocessing_steps = []
    benchmark_settings = ""
    epsilon = "1e-3"
    if benchmark.is_prism():
        # set parameters
        # --graphsolver-iterative-tolerance 1e-4 since the maximal difference is 1e-4
        benchmark_settings = "--model-input-files {} --model-input-type prism --property-input-files {} --property-input-names {} --translate-messages false --value-floating-point-output-native true --graphsolver-iterative-stop-criterion relative --graphsolver-iterative-tolerance {}".format(
            benchmark.get_prism_program_filename(),
            benchmark.get_prism_property_filename(),
            benchmark.get_property_name(), epsilon)
    else:
        # put properties in saparate files
        benchmark_settings = "--model-input-files {} --model-input-type jani --property-input-names {} --translate-messages false --value-floating-point-output-native true --graphsolver-iterative-stop-criterion relative --graphsolver-iterative-tolerance {}".format(
            benchmark.get_janifilename(), benchmark.get_property_name(),
            epsilon)
    if benchmark.get_open_parameter_def_string() != "":
        benchmark_settings += " --const {}".format(
            benchmark.get_open_parameter_def_string())

    memsize = "10240m"
    invocations = []

    # default settings
    default_inv = Invocation()
    default_inv.identifier = "default"
    default_inv.track_id = "often-epsilon-correct"
    if len(preprocessing_steps) != 0:
        for prep in preprocessing_steps:
            default_inv.add_command(prep)
    default_inv.add_command(
        "java -Xms{} -Xmx{} -jar ./epmc-standard.jar check {}".format(
            memsize, memsize, benchmark_settings))
    invocations.append(default_inv)

    #if (benchmark.is_ctmc() or benchmark.is_dtmc()):
    #for tId in ["floating-point-correct", "epsilon-correct", "often-epsilon-correct"]:
    ## specific settings                     !!!!only information about model type, property type and state space size via benchmark.get_num_states_tweak() may be used for tweaking
    #specific_inv = Invocation()
    #specific_inv.identifier = "specific"
    #specific_inv.track_id = tId
    #if len(preprocessing_steps) != 0:
    #for prep in preprocessing_steps:
    #specific_inv.add_command(prep)
    #if tId == "floating-point-correct":
    #epsilon = "1e-14"
    #if tId == "epsilon-correct":
    #epsilon = "1e-6"
    #if tId == "often-epsilon-correct":
    #epsilon = "1e-3"
    #specific_inv.add_command("java -Xms{} -Xmx{} -jar ./epmc-qcomp.jar check {} --graph-solver-stopping-criterion relative --graphsolver-iterative-tolerance {} --engine on-the-fly-eliminator".format(memsize, memsize, benchmark_settings, epsilon))
    #invocations.append(specific_inv)

    #### TODO: add default and specific invocations for other track_ids 'correct', 'floating-point-correct', 'probably-epsilon-correct', 'often-epsilon-correct', 'often-epsilon-correct-10-min'
    ### remember that different tracks have different precisions

    return invocations
예제 #8
0
파일: tool.py 프로젝트: MKlauck/qcomp2020
def get_invocations(benchmark: Benchmark):
    """
    Returns a list of invocations that invoke the tool for the given benchmark.
    It can be assumed that the current directory is the directory from which execute_invocations.py is executed.
    For QCOMP 2020, this should return a list of invocations for all tracks in which the tool can take part. For each track an invocation with default settings has to be provided and in addition, an optimized setting (e.g., the fastest engine and/or solution technique for this benchmark) can be specified. Only information about the model type, the property type and the state space size are allowed to be used to tweak the parameters.
   
    If this benchmark is not supported, an empty list has to be returned.
    """
    # decide whether we want to use storm-dft (which supports galileo fault trees without repair)
    use_storm_dft = False
    if benchmark.is_galileo():
        has_repair = False
        for p in benchmark.get_file_parameters():
            if p["name"] == "R" and p["value"] == True:
                has_repair = True
        if not has_repair:
            use_storm_dft = True

    # Gather the precision settings for the corresponding track
    track_settings = dict()
    track_comments = dict()
    track_settings['correct'] = ' --exact '
    track_comments['correct'] = 'Use exact arithmethic with rationals.'
    track_settings[
        'floating-point-correct'] = ' --exact floats --general:precision 1e-20 '
    track_comments[
        'floating-point-correct'] = 'Use exact arithmethic with floats. The precision needs to be set to increase precision when printing the result to stdout '
    track_settings['epsilon-correct'] = ' --sound --precision 1e-6 '
    track_comments['epsilon-correct'] = 'Use sound model checking methods.'
    track_settings['probably-epsilon-correct'] = ' --sound --precision 5e-2 '
    track_comments['probably-epsilon-correct'] = 'Use sound model checking.'
    track_settings['often-epsilon-correct'] = ' --timebounded:precision 1e-3 '
    track_comments[
        'often-epsilon-correct'] = 'Use potentially unsound but fast solution methods. Use default precision (1e-6) everywhere except for timebounded queries, for which solution methods give epsilon guarantees.'
    track_settings[
        'often-epsilon-correct-10-min'] = ' --signal-timeout 60 --general:precision 1e-12 --gmm++:precision 1e-12 --native:precision 1e-12 --minmax:precision 1e-12 --timebounded:precision 1e-6 ' + (
            "" if use_storm_dft else "--lra:precision 1e-12 ")
    track_comments[
        'often-epsilon-correct-10-min'] = 'Only force termination 60 seconds after receiving SIGTERM. Use potentially unsound but fast solution methods. Take a high precision to make sure that we make use of the 10 minutes. Time bounded queries can not be answered that precisely due to numerics.'

    invocations = []

    for trackId in track_settings:

        if not is_benchmark_supported(benchmark, trackId):
            continue
        # Check whether this is a job for storm-dft
        if use_storm_dft:
            # We now have to obtain the correct property.
            # Unfortunately, this is necessary because the gallileo files do not contain any information of the property
            # The code below might easily break if we pick a different benchmark set
            benchmark_settings = "--dftfile {} ".format(
                benchmark.get_galileo_filename())
            if benchmark.is_time_bounded_probabilistic_reachability():
                time_bound = 1
                for p in benchmark.get_parameters():
                    if p["name"] == "TIME_BOUND":
                        time_bound = p["value"]
                benchmark_settings += "--timebound {} --max".format(time_bound)
            elif benchmark.is_unbounded_expected_time():
                benchmark_settings += "--expectedtime --min"

            benchmark_settings += track_settings[trackId]
            default_inv = Invocation()
            default_inv.track_id = trackId
            default_inv.identifier = "default"
            default_inv.note = "Use Storm-dft with the requested property. " + track_comments[
                trackId]
            default_inv.add_command(
                "~/storm/build/bin/storm-dft {}".format(benchmark_settings))
            invocations.append(default_inv)
            continue  # with next trackId

        # Gather options that are needed for this particular benchmark for any invocation of Storm
        preprocessing_steps = []
        benchmark_settings = ""
        if (benchmark.is_prism()
                or benchmark.is_prism_ma()) and not benchmark.is_pta():
            benchmark_settings = "--prism {} --prop {} {}".format(
                benchmark.get_prism_program_filename(),
                benchmark.get_prism_property_filename(),
                benchmark.get_property_name())
            if benchmark.get_open_parameter_def_string() != "":
                benchmark_settings += " --constants {}".format(
                    benchmark.get_open_parameter_def_string())
            if benchmark.is_ctmc():
                benchmark_settings += " --prismcompat"
        else:
            # For jani input, it might be the case that preprocessing is necessary using moconv
            moconv_options = []
            features = benchmark.get_jani_features()
            for f in [
                    "arrays", "derived-operators", "functions",
                    "state-exit-rewards"
            ]:
                if f in features: features.remove(f)
            if "nondet-selection" in features:
                moconv_options.append("--remove-disc-nondet")
                features.remove("nondet-selection")
            if len(features) != 0:
                print("Unsupported jani feature(s): {}".format(features))
            if benchmark.is_pta():
                moconv_options.append("--digital-clocks")
                if benchmark.get_model_short_name() == "wlan-large":
                    # This is actually a stochastic timed automaton. Distributions have to be unrolled first
                    moconv_options.append(" --unroll-distrs")
            if len(moconv_options) != 0:
                preprocessing_steps.append(
                    "~/modest/modest convert {} {} --output {} --overwrite".
                    format(benchmark.get_janifilename(),
                           " ".join(moconv_options),
                           "converted_" + benchmark.get_janifilename()))
                if benchmark.get_open_parameter_def_string() != "":
                    preprocessing_steps[-1] += " --experiment {}".format(
                        benchmark.get_open_parameter_def_string())
                benchmark_settings = "--jani {} --janiproperty {}".format(
                    "converted_" + benchmark.get_janifilename(),
                    benchmark.get_property_name())
            else:
                benchmark_settings = "--jani {} --janiproperty {}".format(
                    benchmark.get_janifilename(),
                    benchmark.get_property_name())
                if benchmark.get_open_parameter_def_string() != "":
                    benchmark_settings += " --constants {}".format(
                        benchmark.get_open_parameter_def_string())

        benchmark_settings += track_settings[trackId]
        benchmark_settings += " --engine portfolio --ddlib sylvan --sylvan:maxmem 6114 --sylvan:threads 4"
        benchmark_comment = "Use Storm with protfolio engine. Use sylvan as library for Dds, restricted to 6GB memory and 4 threads. " + track_comments[
            trackId]
        # default settings
        default_inv = Invocation()
        default_inv.identifier = "default"
        # Apparently, a note is not needed
        # default_inv.note = benchmark_comment
        default_inv.track_id = trackId
        for prep in preprocessing_steps:
            default_inv.add_command(prep)
        default_inv.add_command(
            "~/storm/build/bin/storm {}".format(benchmark_settings))
        invocations.append(default_inv)

        # specific settings                     !!!!only information about model type, property type and state space size via benchmark.get_num_states_tweak() may be used for tweaking
        # Omitted because there is no significant benefit
        # if benchmark.get_num_states_tweak() is not None:
        #    specific_inv = Invocation()
        #    specific_inv.identifier = "specific"
        #    specific_inv.track_id = trackId
        #    for prep in preprocessing_steps:
        #        specific_inv.add_command(prep)
        #    specific_inv.add_command("~/storm/build/bin/storm {} --hints:states {}".format(benchmark_settings, benchmark.get_num_states_tweak()))
        #    invocations.append(specific_inv)

    return invocations