def test_raw_prediction_voted(self): args = PredictionAttrs() predictor = MultiPredictor(checkpoints=args.checkpoint) images = [np.array(Image.open(file), dtype=np.uint8) for file in args.files] for file, image in zip(args.files, images): r = list(predictor.predict_raw([image], progress_bar=False))[0] print(file, [rn.sentence for rn in r])
class CalamariRecognize(Processor): def __init__(self, *args, **kwargs): kwargs['ocrd_tool'] = OCRD_TOOL['tools'][TOOL] kwargs['version'] = OCRD_TOOL['version'] super(CalamariRecognize, self).__init__(*args, **kwargs) def _init_calamari(self): os.environ['TF_CPP_MIN_LOG_LEVEL'] = TF_CPP_MIN_LOG_LEVEL checkpoints = glob(self.parameter['checkpoint']) self.predictor = MultiPredictor(checkpoints=checkpoints) voter_params = VoterParams() voter_params.type = VoterParams.Type.Value( self.parameter['voter'].upper()) self.voter = voter_from_proto(voter_params) def process(self): """ Performs the recognition. """ assert_file_grp_cardinality(self.input_file_grp, 1) assert_file_grp_cardinality(self.output_file_grp, 1) self._init_calamari() for (n, input_file) in enumerate(self.input_files): page_id = input_file.pageId or input_file.ID log.info("INPUT FILE %i / %s", n, page_id) pcgts = page_from_file(self.workspace.download_file(input_file)) page = pcgts.get_Page() page_image, page_xywh, page_image_info = self.workspace.image_from_page( page, page_id) for region in pcgts.get_Page().get_TextRegion(): region_image, region_xywh = self.workspace.image_from_segment( region, page_image, page_xywh) textlines = region.get_TextLine() log.info("About to recognize %i lines of region '%s'", len(textlines), region.id) for (line_no, line) in enumerate(textlines): log.debug("Recognizing line '%s' in region '%s'", line.id, region.id) line_image, line_coords = self.workspace.image_from_segment( line, region_image, region_xywh) line_image_np = np.array(line_image, dtype=np.uint8) raw_results = list( self.predictor.predict_raw([line_image_np], progress_bar=False))[0] for i, p in enumerate(raw_results): p.prediction.id = "fold_{}".format(i) prediction = self.voter.vote_prediction_result(raw_results) prediction.id = "voted" # Build line text on our own # # Calamari does whitespace post-processing on prediction.sentence, while it does not do the same # on prediction.positions. Do it on our own to have consistency. # # XXX Check Calamari's built-in post-processing on prediction.sentence def _sort_chars(p): """Filter and sort chars of prediction p""" chars = p.chars chars = [ c for c in chars if c.char ] # XXX Note that omission probabilities are not normalized?! chars = [ c for c in chars if c.probability >= self.parameter['glyph_conf_cutoff'] ] chars = sorted(chars, key=lambda k: k.probability, reverse=True) return chars def _drop_leading_spaces(positions): return list( itertools.dropwhile( lambda p: _sort_chars(p)[0].char == " ", positions)) def _drop_trailing_spaces(positions): return list( reversed(_drop_leading_spaces( reversed(positions)))) def _drop_double_spaces(positions): def _drop_double_spaces_generator(positions): last_was_space = False for p in positions: if p.chars[0].char == " ": if not last_was_space: yield p last_was_space = True else: yield p last_was_space = False return list(_drop_double_spaces_generator(positions)) positions = prediction.positions positions = _drop_leading_spaces(positions) positions = _drop_trailing_spaces(positions) positions = _drop_double_spaces(positions) positions = list(positions) line_text = ''.join( _sort_chars(p)[0].char for p in positions) if line_text != prediction.sentence: log.warning( "Our own line text is not the same as Calamari's: '%s' != '%s'", line_text, prediction.sentence) # Delete existing results if line.get_TextEquiv(): log.warning("Line '%s' already contained text results", line.id) line.set_TextEquiv([]) if line.get_Word(): log.warning( "Line '%s' already contained word segmentation", line.id) line.set_Word([]) # Save line results line_conf = prediction.avg_char_probability line.set_TextEquiv( [TextEquivType(Unicode=line_text, conf=line_conf)]) # Save word results # # Calamari OCR does not provide word positions, so we infer word positions from a. text segmentation # and b. the glyph positions. This is necessary because the PAGE XML format enforces a strict # hierarchy of lines > words > glyphs. def _words(s): """Split words based on spaces and include spaces as 'words'""" spaces = None word = '' for c in s: if c == ' ' and spaces is True: word += c elif c != ' ' and spaces is False: word += c else: if word: yield word word = c spaces = (c == ' ') yield word if self.parameter['textequiv_level'] in ['word', 'glyph']: word_no = 0 i = 0 for word_text in _words(line_text): word_length = len(word_text) if not all(c == ' ' for c in word_text): word_positions = positions[i:i + word_length] word_start = word_positions[0].global_start word_end = word_positions[-1].global_end polygon = polygon_from_x0y0x1y1([ word_start, 0, word_end, line_image.height ]) points = points_from_polygon( coordinates_for_segment( polygon, None, line_coords)) # XXX Crop to line polygon? word = WordType(id='%s_word%04d' % (line.id, word_no), Coords=CoordsType(points)) word.add_TextEquiv( TextEquivType(Unicode=word_text)) if self.parameter[ 'textequiv_level'] == 'glyph': for glyph_no, p in enumerate( word_positions): glyph_start = p.global_start glyph_end = p.global_end polygon = polygon_from_x0y0x1y1([ glyph_start, 0, glyph_end, line_image.height ]) points = points_from_polygon( coordinates_for_segment( polygon, None, line_coords)) glyph = GlyphType( id='%s_glyph%04d' % (word.id, glyph_no), Coords=CoordsType(points)) # Add predictions (= TextEquivs) char_index_start = 1 # Must start with 1, see https://ocr-d.github.io/page#multiple-textequivs for char_index, char in enumerate( _sort_chars(p), start=char_index_start): glyph.add_TextEquiv( TextEquivType( Unicode=char.char, index=char_index, conf=char.probability)) word.add_Glyph(glyph) line.add_Word(word) word_no += 1 i += word_length _page_update_higher_textequiv_levels('line', pcgts) # Add metadata about this operation and its runtime parameters: metadata = pcgts.get_Metadata() # ensured by from_file() metadata.add_MetadataItem( MetadataItemType( type_="processingStep", name=self.ocrd_tool['steps'][0], value=TOOL, Labels=[ LabelsType(externalModel="ocrd-tool", externalId="parameters", Label=[ LabelType(type_=name, value=self.parameter[name]) for name in self.parameter.keys() ]) ])) file_id = make_file_id(input_file, self.output_file_grp) pcgts.set_pcGtsId(file_id) self.workspace.add_file(ID=file_id, file_grp=self.output_file_grp, pageId=input_file.pageId, mimetype=MIMETYPE_PAGE, local_filename=os.path.join( self.output_file_grp, file_id + '.xml'), content=to_xml(pcgts))
class CalamariRecognize(Processor): def __init__(self, *args, **kwargs): kwargs['ocrd_tool'] = OCRD_TOOL['tools'][TOOL] kwargs['version'] = '%s (calamari %s, tensorflow %s)' % ( OCRD_TOOL['version'], calamari_version, tensorflow_version) super(CalamariRecognize, self).__init__(*args, **kwargs) if hasattr(self, 'output_file_grp'): # processing context self.setup() def setup(self): """ Set up the model prior to processing. """ resolved = self.resolve_resource(self.parameter['checkpoint_dir']) checkpoints = glob('%s/*.ckpt.json' % resolved) self.predictor = MultiPredictor(checkpoints=checkpoints) self.network_input_channels = self.predictor.predictors[ 0].network.input_channels #self.network_input_channels = self.predictor.predictors[0].network_params.channels # not used! # binarization = self.predictor.predictors[0].model_params.data_preprocessor.binarization # not used! # self.features = ('' if self.network_input_channels != 1 else # 'binarized' if binarization != 'GRAY' else # 'grayscale_normalized') self.features = '' voter_params = VoterParams() voter_params.type = VoterParams.Type.Value( self.parameter['voter'].upper()) self.voter = voter_from_proto(voter_params) def process(self): """ Perform text recognition with Calamari on the workspace. If ``texequiv_level`` is ``word`` or ``glyph``, then additionally create word / glyph level segments by splitting at white space characters / glyph boundaries. In the case of ``glyph``, add all alternative character hypotheses down to ``glyph_conf_cutoff`` confidence threshold. """ log = getLogger('processor.CalamariRecognize') assert_file_grp_cardinality(self.input_file_grp, 1) assert_file_grp_cardinality(self.output_file_grp, 1) for (n, input_file) in enumerate(self.input_files): page_id = input_file.pageId or input_file.ID log.info("INPUT FILE %i / %s", n, page_id) pcgts = page_from_file(self.workspace.download_file(input_file)) page = pcgts.get_Page() page_image, page_coords, page_image_info = self.workspace.image_from_page( page, page_id, feature_selector=self.features) for region in page.get_AllRegions(classes=['Text']): region_image, region_coords = self.workspace.image_from_segment( region, page_image, page_coords, feature_selector=self.features) textlines = region.get_TextLine() log.info("About to recognize %i lines of region '%s'", len(textlines), region.id) line_images_np = [] line_coordss = [] for line in textlines: log.debug("Recognizing line '%s' in region '%s'", line.id, region.id) line_image, line_coords = self.workspace.image_from_segment( line, region_image, region_coords, feature_selector=self.features) if ('binarized' not in line_coords['features'] and 'grayscale_normalized' not in line_coords['features'] and self.network_input_channels == 1): # We cannot use a feature selector for this since we don't # know whether the model expects (has been trained on) # binarized or grayscale images; but raw images are likely # always inadequate: log.warning( "Using raw image for line '%s' in region '%s'", line.id, region.id) line_image = line_image if all(line_image.size) else [[0]] line_image_np = np.array(line_image, dtype=np.uint8) line_images_np.append(line_image_np) line_coordss.append(line_coords) raw_results_all = self.predictor.predict_raw( line_images_np, progress_bar=False) for line, line_coords, raw_results in zip( textlines, line_coordss, raw_results_all): for i, p in enumerate(raw_results): p.prediction.id = "fold_{}".format(i) prediction = self.voter.vote_prediction_result(raw_results) prediction.id = "voted" # Build line text on our own # # Calamari does whitespace post-processing on prediction.sentence, while it does not do the same # on prediction.positions. Do it on our own to have consistency. # # XXX Check Calamari's built-in post-processing on prediction.sentence def _sort_chars(p): """Filter and sort chars of prediction p""" chars = p.chars chars = [ c for c in chars if c.char ] # XXX Note that omission probabilities are not normalized?! chars = [ c for c in chars if c.probability >= self.parameter['glyph_conf_cutoff'] ] chars = sorted(chars, key=lambda k: k.probability, reverse=True) return chars def _drop_leading_spaces(positions): return list( itertools.dropwhile( lambda p: _sort_chars(p)[0].char == " ", positions)) def _drop_trailing_spaces(positions): return list( reversed(_drop_leading_spaces( reversed(positions)))) def _drop_double_spaces(positions): def _drop_double_spaces_generator(positions): last_was_space = False for p in positions: if p.chars[0].char == " ": if not last_was_space: yield p last_was_space = True else: yield p last_was_space = False return list(_drop_double_spaces_generator(positions)) positions = prediction.positions positions = _drop_leading_spaces(positions) positions = _drop_trailing_spaces(positions) positions = _drop_double_spaces(positions) positions = list(positions) line_text = ''.join( _sort_chars(p)[0].char for p in positions) if line_text != prediction.sentence: log.warning( "Our own line text is not the same as Calamari's: '%s' != '%s'", line_text, prediction.sentence) # Delete existing results if line.get_TextEquiv(): log.warning("Line '%s' already contained text results", line.id) line.set_TextEquiv([]) if line.get_Word(): log.warning( "Line '%s' already contained word segmentation", line.id) line.set_Word([]) # Save line results line_conf = prediction.avg_char_probability line.set_TextEquiv( [TextEquivType(Unicode=line_text, conf=line_conf)]) # Save word results # # Calamari OCR does not provide word positions, so we infer word positions from a. text segmentation # and b. the glyph positions. This is necessary because the PAGE XML format enforces a strict # hierarchy of lines > words > glyphs. def _words(s): """Split words based on spaces and include spaces as 'words'""" spaces = None word = '' for c in s: if c == ' ' and spaces is True: word += c elif c != ' ' and spaces is False: word += c else: if word: yield word word = c spaces = (c == ' ') yield word if self.parameter['textequiv_level'] in ['word', 'glyph']: word_no = 0 i = 0 for word_text in _words(line_text): word_length = len(word_text) if not all(c == ' ' for c in word_text): word_positions = positions[i:i + word_length] word_start = word_positions[0].global_start word_end = word_positions[-1].global_end polygon = polygon_from_x0y0x1y1([ word_start, 0, word_end, line_image.height ]) points = points_from_polygon( coordinates_for_segment( polygon, None, line_coords)) # XXX Crop to line polygon? word = WordType(id='%s_word%04d' % (line.id, word_no), Coords=CoordsType(points)) word.add_TextEquiv( TextEquivType(Unicode=word_text)) if self.parameter[ 'textequiv_level'] == 'glyph': for glyph_no, p in enumerate( word_positions): glyph_start = p.global_start glyph_end = p.global_end polygon = polygon_from_x0y0x1y1([ glyph_start, 0, glyph_end, line_image.height ]) points = points_from_polygon( coordinates_for_segment( polygon, None, line_coords)) glyph = GlyphType( id='%s_glyph%04d' % (word.id, glyph_no), Coords=CoordsType(points)) # Add predictions (= TextEquivs) char_index_start = 1 # Must start with 1, see https://ocr-d.github.io/page#multiple-textequivs for char_index, char in enumerate( _sort_chars(p), start=char_index_start): glyph.add_TextEquiv( TextEquivType( Unicode=char.char, index=char_index, conf=char.probability)) word.add_Glyph(glyph) line.add_Word(word) word_no += 1 i += word_length _page_update_higher_textequiv_levels('line', pcgts) # Add metadata about this operation and its runtime parameters: self.add_metadata(pcgts) file_id = make_file_id(input_file, self.output_file_grp) pcgts.set_pcGtsId(file_id) self.workspace.add_file(ID=file_id, file_grp=self.output_file_grp, pageId=input_file.pageId, mimetype=MIMETYPE_PAGE, local_filename=os.path.join( self.output_file_grp, file_id + '.xml'), content=to_xml(pcgts))
class OCRProcessor(Processor): def __init__(self, options): super().__init__(options) self._options = options self._ocr = self._options["ocr"] if self._ocr == "FAKE": self._model_path = None self._models = [] self._line_height = 48 self._chunk_size = 1 else: if not options["model"]: raise click.BadParameter( "Please specify a model path", param="model") self._model_path = Path(options["model"]) models = list(self._model_path.glob("*.json")) if not options["legacy_model"]: models = [m for m in models if m.with_suffix(".h5").exists()] if len(models) < 1: raise FileNotFoundError( "no Calamari models found at %s" % self._model_path) self._models = models self._line_height = None self._chunk_size = None self._predictor = None self._voter = None self._ignored = RegionsFilter(options["ignore"]) if self._ocr != "FULL": logging.getLogger().setLevel(logging.INFO) @property def processor_name(self): return __loader__.name def _load_models(self): if self._predictor is not None: return if self._ocr == "FAKE": return batch_size = self._options["batch_size"] if batch_size > 0: batch_size_kwargs = dict(batch_size=batch_size) else: batch_size_kwargs = dict() self._chunk_size = batch_size if len(self._models) == 1: self._predictor = Predictor( str(self._models[0]), **batch_size_kwargs) self._predict_kwargs = batch_size_kwargs self._voter = None self._line_height = int(self._predictor.model_params.line_height) else: logging.info("using Calamari voting with %d models." % len(self._models)) self._predictor = MultiPredictor( checkpoints=[str(p) for p in self._models], **batch_size_kwargs) self._predict_kwargs = dict() self._voter = ConfidenceVoter() self._line_height = int(self._predictor.predictors[0].model_params.line_height) def artifacts(self): return [ ("reliable", Input( Artifact.LINES, Artifact.TABLES, stage=Stage.RELIABLE)), ("output", Output(Artifact.OCR)), ] def process(self, page_path: Path, reliable, output): self._load_models() lines = reliable.lines.by_path extractor = LineExtractor( reliable.tables, self._line_height, self._options, min_confidence=reliable.lines.min_confidence) min_width = 6 min_height = 6 names = [] empty_names = [] images = [] for stem, im in extractor(lines, ignored=self._ignored): if im.width >= min_width and im.height >= min_height: names.append("/".join(stem)) images.append(np.array(im)) else: empty_names.append("/".join(stem)) if self._ocr == "DRY": logging.info("will ocr the following lines:\n%s" % "\n".join(sorted(names))) return chunk_size = self._chunk_size if chunk_size <= 0: chunk_size = len(images) texts = [] if self._ocr == "FAKE": for name in names: texts.append("text for %s." % name) else: for i in range(0, len(images), chunk_size): for prediction in self._predictor.predict_raw( images[i:i + chunk_size], progress_bar=False, **self._predict_kwargs): if self._voter is not None: prediction = self._voter.vote_prediction_result(prediction) texts.append(prediction.sentence) with output.ocr() as zf: for name, text in zip(names, texts): zf.writestr("%s.txt" % name, text) for name in empty_names: zf.writestr("%s.txt" % name, "")
class CalamariRecognize(Processor): def __init__(self, *args, **kwargs): kwargs['ocrd_tool'] = OCRD_TOOL['tools']['ocrd-calamari-recognize'] super(CalamariRecognize, self).__init__(*args, **kwargs) def _init_calamari(self): os.environ['TF_CPP_MIN_LOG_LEVEL'] = TF_CPP_MIN_LOG_LEVEL checkpoints = glob(self.parameter['checkpoint']) self.predictor = MultiPredictor(checkpoints=checkpoints) voter_params = VoterParams() voter_params.type = VoterParams.Type.Value(self.parameter['voter'].upper()) self.voter = voter_from_proto(voter_params) def _make_file_id(self, input_file, n): file_id = input_file.ID.replace(self.input_file_grp, self.output_file_grp) if file_id == input_file.ID: file_id = concat_padded(self.output_file_grp, n) return file_id def process(self): """ Performs the recognition. """ self._init_calamari() for (n, input_file) in enumerate(self.input_files): page_id = input_file.pageId or input_file.ID log.info("INPUT FILE %i / %s", n, page_id) pcgts = page_from_file(self.workspace.download_file(input_file)) page = pcgts.get_Page() page_image, page_xywh, page_image_info = self.workspace.image_from_page(page, page_id) for region in pcgts.get_Page().get_TextRegion(): region_image, region_xywh = self.workspace.image_from_segment(region, page_image, page_xywh) textlines = region.get_TextLine() log.info("About to recognize %i lines of region '%s'", len(textlines), region.id) for (line_no, line) in enumerate(textlines): log.debug("Recognizing line '%s' in region '%s'", line_no, region.id) line_image, line_xywh = self.workspace.image_from_segment(line, region_image, region_xywh) line_image_np = np.array(line_image, dtype=np.uint8) raw_results = list(self.predictor.predict_raw([line_image_np], progress_bar=False))[0] for i, p in enumerate(raw_results): p.prediction.id = "fold_{}".format(i) prediction = self.voter.vote_prediction_result(raw_results) prediction.id = "voted" line_text = prediction.sentence line_conf = prediction.avg_char_probability line.set_TextEquiv([TextEquivType(Unicode=line_text, conf=line_conf)]) _page_update_higher_textequiv_levels('line', pcgts) file_id = self._make_file_id(input_file, n) self.workspace.add_file( ID=file_id, file_grp=self.output_file_grp, pageId=input_file.pageId, mimetype=MIMETYPE_PAGE, local_filename=os.path.join(self.output_file_grp, file_id + '.xml'), content=to_xml(pcgts))