Exemplo n.º 1
0
 def test_raw_prediction_voted(self):
     args = PredictionAttrs()
     predictor = MultiPredictor(checkpoints=args.checkpoint)
     images = [np.array(Image.open(file), dtype=np.uint8) for file in args.files]
     for file, image in zip(args.files, images):
         r = list(predictor.predict_raw([image], progress_bar=False))[0]
         print(file, [rn.sentence for rn in r])
Exemplo n.º 2
0
class CalamariRecognize(Processor):
    def __init__(self, *args, **kwargs):
        kwargs['ocrd_tool'] = OCRD_TOOL['tools'][TOOL]
        kwargs['version'] = OCRD_TOOL['version']
        super(CalamariRecognize, self).__init__(*args, **kwargs)

    def _init_calamari(self):
        os.environ['TF_CPP_MIN_LOG_LEVEL'] = TF_CPP_MIN_LOG_LEVEL

        checkpoints = glob(self.parameter['checkpoint'])
        self.predictor = MultiPredictor(checkpoints=checkpoints)

        voter_params = VoterParams()
        voter_params.type = VoterParams.Type.Value(
            self.parameter['voter'].upper())
        self.voter = voter_from_proto(voter_params)

    def process(self):
        """
        Performs the recognition.
        """

        assert_file_grp_cardinality(self.input_file_grp, 1)
        assert_file_grp_cardinality(self.output_file_grp, 1)

        self._init_calamari()

        for (n, input_file) in enumerate(self.input_files):
            page_id = input_file.pageId or input_file.ID
            log.info("INPUT FILE %i / %s", n, page_id)
            pcgts = page_from_file(self.workspace.download_file(input_file))

            page = pcgts.get_Page()
            page_image, page_xywh, page_image_info = self.workspace.image_from_page(
                page, page_id)

            for region in pcgts.get_Page().get_TextRegion():
                region_image, region_xywh = self.workspace.image_from_segment(
                    region, page_image, page_xywh)

                textlines = region.get_TextLine()
                log.info("About to recognize %i lines of region '%s'",
                         len(textlines), region.id)
                for (line_no, line) in enumerate(textlines):
                    log.debug("Recognizing line '%s' in region '%s'", line.id,
                              region.id)

                    line_image, line_coords = self.workspace.image_from_segment(
                        line, region_image, region_xywh)
                    line_image_np = np.array(line_image, dtype=np.uint8)

                    raw_results = list(
                        self.predictor.predict_raw([line_image_np],
                                                   progress_bar=False))[0]
                    for i, p in enumerate(raw_results):
                        p.prediction.id = "fold_{}".format(i)

                    prediction = self.voter.vote_prediction_result(raw_results)
                    prediction.id = "voted"

                    # Build line text on our own
                    #
                    # Calamari does whitespace post-processing on prediction.sentence, while it does not do the same
                    # on prediction.positions. Do it on our own to have consistency.
                    #
                    # XXX Check Calamari's built-in post-processing on prediction.sentence

                    def _sort_chars(p):
                        """Filter and sort chars of prediction p"""
                        chars = p.chars
                        chars = [
                            c for c in chars if c.char
                        ]  # XXX Note that omission probabilities are not normalized?!
                        chars = [
                            c for c in chars if c.probability >=
                            self.parameter['glyph_conf_cutoff']
                        ]
                        chars = sorted(chars,
                                       key=lambda k: k.probability,
                                       reverse=True)
                        return chars

                    def _drop_leading_spaces(positions):
                        return list(
                            itertools.dropwhile(
                                lambda p: _sort_chars(p)[0].char == " ",
                                positions))

                    def _drop_trailing_spaces(positions):
                        return list(
                            reversed(_drop_leading_spaces(
                                reversed(positions))))

                    def _drop_double_spaces(positions):
                        def _drop_double_spaces_generator(positions):
                            last_was_space = False
                            for p in positions:
                                if p.chars[0].char == " ":
                                    if not last_was_space:
                                        yield p
                                    last_was_space = True
                                else:
                                    yield p
                                    last_was_space = False

                        return list(_drop_double_spaces_generator(positions))

                    positions = prediction.positions
                    positions = _drop_leading_spaces(positions)
                    positions = _drop_trailing_spaces(positions)
                    positions = _drop_double_spaces(positions)
                    positions = list(positions)

                    line_text = ''.join(
                        _sort_chars(p)[0].char for p in positions)
                    if line_text != prediction.sentence:
                        log.warning(
                            "Our own line text is not the same as Calamari's: '%s' != '%s'",
                            line_text, prediction.sentence)

                    # Delete existing results
                    if line.get_TextEquiv():
                        log.warning("Line '%s' already contained text results",
                                    line.id)
                    line.set_TextEquiv([])
                    if line.get_Word():
                        log.warning(
                            "Line '%s' already contained word segmentation",
                            line.id)
                    line.set_Word([])

                    # Save line results
                    line_conf = prediction.avg_char_probability
                    line.set_TextEquiv(
                        [TextEquivType(Unicode=line_text, conf=line_conf)])

                    # Save word results
                    #
                    # Calamari OCR does not provide word positions, so we infer word positions from a. text segmentation
                    # and b. the glyph positions. This is necessary because the PAGE XML format enforces a strict
                    # hierarchy of lines > words > glyphs.

                    def _words(s):
                        """Split words based on spaces and include spaces as 'words'"""
                        spaces = None
                        word = ''
                        for c in s:
                            if c == ' ' and spaces is True:
                                word += c
                            elif c != ' ' and spaces is False:
                                word += c
                            else:
                                if word:
                                    yield word
                                word = c
                                spaces = (c == ' ')
                        yield word

                    if self.parameter['textequiv_level'] in ['word', 'glyph']:
                        word_no = 0
                        i = 0

                        for word_text in _words(line_text):
                            word_length = len(word_text)
                            if not all(c == ' ' for c in word_text):
                                word_positions = positions[i:i + word_length]
                                word_start = word_positions[0].global_start
                                word_end = word_positions[-1].global_end

                                polygon = polygon_from_x0y0x1y1([
                                    word_start, 0, word_end, line_image.height
                                ])
                                points = points_from_polygon(
                                    coordinates_for_segment(
                                        polygon, None, line_coords))
                                # XXX Crop to line polygon?

                                word = WordType(id='%s_word%04d' %
                                                (line.id, word_no),
                                                Coords=CoordsType(points))
                                word.add_TextEquiv(
                                    TextEquivType(Unicode=word_text))

                                if self.parameter[
                                        'textequiv_level'] == 'glyph':
                                    for glyph_no, p in enumerate(
                                            word_positions):
                                        glyph_start = p.global_start
                                        glyph_end = p.global_end

                                        polygon = polygon_from_x0y0x1y1([
                                            glyph_start, 0, glyph_end,
                                            line_image.height
                                        ])
                                        points = points_from_polygon(
                                            coordinates_for_segment(
                                                polygon, None, line_coords))

                                        glyph = GlyphType(
                                            id='%s_glyph%04d' %
                                            (word.id, glyph_no),
                                            Coords=CoordsType(points))

                                        # Add predictions (= TextEquivs)
                                        char_index_start = 1  # Must start with 1, see https://ocr-d.github.io/page#multiple-textequivs
                                        for char_index, char in enumerate(
                                                _sort_chars(p),
                                                start=char_index_start):
                                            glyph.add_TextEquiv(
                                                TextEquivType(
                                                    Unicode=char.char,
                                                    index=char_index,
                                                    conf=char.probability))

                                        word.add_Glyph(glyph)

                                line.add_Word(word)
                                word_no += 1

                            i += word_length

            _page_update_higher_textequiv_levels('line', pcgts)

            # Add metadata about this operation and its runtime parameters:
            metadata = pcgts.get_Metadata()  # ensured by from_file()
            metadata.add_MetadataItem(
                MetadataItemType(
                    type_="processingStep",
                    name=self.ocrd_tool['steps'][0],
                    value=TOOL,
                    Labels=[
                        LabelsType(externalModel="ocrd-tool",
                                   externalId="parameters",
                                   Label=[
                                       LabelType(type_=name,
                                                 value=self.parameter[name])
                                       for name in self.parameter.keys()
                                   ])
                    ]))

            file_id = make_file_id(input_file, self.output_file_grp)
            pcgts.set_pcGtsId(file_id)
            self.workspace.add_file(ID=file_id,
                                    file_grp=self.output_file_grp,
                                    pageId=input_file.pageId,
                                    mimetype=MIMETYPE_PAGE,
                                    local_filename=os.path.join(
                                        self.output_file_grp,
                                        file_id + '.xml'),
                                    content=to_xml(pcgts))
Exemplo n.º 3
0
class CalamariRecognize(Processor):
    def __init__(self, *args, **kwargs):
        kwargs['ocrd_tool'] = OCRD_TOOL['tools'][TOOL]
        kwargs['version'] = '%s (calamari %s, tensorflow %s)' % (
            OCRD_TOOL['version'], calamari_version, tensorflow_version)
        super(CalamariRecognize, self).__init__(*args, **kwargs)
        if hasattr(self, 'output_file_grp'):
            # processing context
            self.setup()

    def setup(self):
        """
        Set up the model prior to processing.
        """
        resolved = self.resolve_resource(self.parameter['checkpoint_dir'])
        checkpoints = glob('%s/*.ckpt.json' % resolved)
        self.predictor = MultiPredictor(checkpoints=checkpoints)

        self.network_input_channels = self.predictor.predictors[
            0].network.input_channels
        #self.network_input_channels = self.predictor.predictors[0].network_params.channels # not used!
        # binarization = self.predictor.predictors[0].model_params.data_preprocessor.binarization # not used!
        # self.features = ('' if self.network_input_channels != 1 else
        #                  'binarized' if binarization != 'GRAY' else
        #                  'grayscale_normalized')
        self.features = ''

        voter_params = VoterParams()
        voter_params.type = VoterParams.Type.Value(
            self.parameter['voter'].upper())
        self.voter = voter_from_proto(voter_params)

    def process(self):
        """
        Perform text recognition with Calamari on the workspace.

        If ``texequiv_level`` is ``word`` or ``glyph``, then additionally create word / glyph level segments by
        splitting at white space characters / glyph boundaries. In the case of ``glyph``, add all alternative character
        hypotheses down to ``glyph_conf_cutoff`` confidence threshold.
        """
        log = getLogger('processor.CalamariRecognize')

        assert_file_grp_cardinality(self.input_file_grp, 1)
        assert_file_grp_cardinality(self.output_file_grp, 1)

        for (n, input_file) in enumerate(self.input_files):
            page_id = input_file.pageId or input_file.ID
            log.info("INPUT FILE %i / %s", n, page_id)
            pcgts = page_from_file(self.workspace.download_file(input_file))

            page = pcgts.get_Page()
            page_image, page_coords, page_image_info = self.workspace.image_from_page(
                page, page_id, feature_selector=self.features)

            for region in page.get_AllRegions(classes=['Text']):
                region_image, region_coords = self.workspace.image_from_segment(
                    region,
                    page_image,
                    page_coords,
                    feature_selector=self.features)

                textlines = region.get_TextLine()
                log.info("About to recognize %i lines of region '%s'",
                         len(textlines), region.id)
                line_images_np = []
                line_coordss = []
                for line in textlines:
                    log.debug("Recognizing line '%s' in region '%s'", line.id,
                              region.id)

                    line_image, line_coords = self.workspace.image_from_segment(
                        line,
                        region_image,
                        region_coords,
                        feature_selector=self.features)
                    if ('binarized' not in line_coords['features']
                            and 'grayscale_normalized'
                            not in line_coords['features']
                            and self.network_input_channels == 1):
                        # We cannot use a feature selector for this since we don't
                        # know whether the model expects (has been trained on)
                        # binarized or grayscale images; but raw images are likely
                        # always inadequate:
                        log.warning(
                            "Using raw image for line '%s' in region '%s'",
                            line.id, region.id)

                    line_image = line_image if all(line_image.size) else [[0]]
                    line_image_np = np.array(line_image, dtype=np.uint8)
                    line_images_np.append(line_image_np)
                    line_coordss.append(line_coords)
                raw_results_all = self.predictor.predict_raw(
                    line_images_np, progress_bar=False)

                for line, line_coords, raw_results in zip(
                        textlines, line_coordss, raw_results_all):

                    for i, p in enumerate(raw_results):
                        p.prediction.id = "fold_{}".format(i)

                    prediction = self.voter.vote_prediction_result(raw_results)
                    prediction.id = "voted"

                    # Build line text on our own
                    #
                    # Calamari does whitespace post-processing on prediction.sentence, while it does not do the same
                    # on prediction.positions. Do it on our own to have consistency.
                    #
                    # XXX Check Calamari's built-in post-processing on prediction.sentence

                    def _sort_chars(p):
                        """Filter and sort chars of prediction p"""
                        chars = p.chars
                        chars = [
                            c for c in chars if c.char
                        ]  # XXX Note that omission probabilities are not normalized?!
                        chars = [
                            c for c in chars if c.probability >=
                            self.parameter['glyph_conf_cutoff']
                        ]
                        chars = sorted(chars,
                                       key=lambda k: k.probability,
                                       reverse=True)
                        return chars

                    def _drop_leading_spaces(positions):
                        return list(
                            itertools.dropwhile(
                                lambda p: _sort_chars(p)[0].char == " ",
                                positions))

                    def _drop_trailing_spaces(positions):
                        return list(
                            reversed(_drop_leading_spaces(
                                reversed(positions))))

                    def _drop_double_spaces(positions):
                        def _drop_double_spaces_generator(positions):
                            last_was_space = False
                            for p in positions:
                                if p.chars[0].char == " ":
                                    if not last_was_space:
                                        yield p
                                    last_was_space = True
                                else:
                                    yield p
                                    last_was_space = False

                        return list(_drop_double_spaces_generator(positions))

                    positions = prediction.positions
                    positions = _drop_leading_spaces(positions)
                    positions = _drop_trailing_spaces(positions)
                    positions = _drop_double_spaces(positions)
                    positions = list(positions)

                    line_text = ''.join(
                        _sort_chars(p)[0].char for p in positions)
                    if line_text != prediction.sentence:
                        log.warning(
                            "Our own line text is not the same as Calamari's: '%s' != '%s'",
                            line_text, prediction.sentence)

                    # Delete existing results
                    if line.get_TextEquiv():
                        log.warning("Line '%s' already contained text results",
                                    line.id)
                    line.set_TextEquiv([])
                    if line.get_Word():
                        log.warning(
                            "Line '%s' already contained word segmentation",
                            line.id)
                    line.set_Word([])

                    # Save line results
                    line_conf = prediction.avg_char_probability
                    line.set_TextEquiv(
                        [TextEquivType(Unicode=line_text, conf=line_conf)])

                    # Save word results
                    #
                    # Calamari OCR does not provide word positions, so we infer word positions from a. text segmentation
                    # and b. the glyph positions. This is necessary because the PAGE XML format enforces a strict
                    # hierarchy of lines > words > glyphs.

                    def _words(s):
                        """Split words based on spaces and include spaces as 'words'"""
                        spaces = None
                        word = ''
                        for c in s:
                            if c == ' ' and spaces is True:
                                word += c
                            elif c != ' ' and spaces is False:
                                word += c
                            else:
                                if word:
                                    yield word
                                word = c
                                spaces = (c == ' ')
                        yield word

                    if self.parameter['textequiv_level'] in ['word', 'glyph']:
                        word_no = 0
                        i = 0

                        for word_text in _words(line_text):
                            word_length = len(word_text)
                            if not all(c == ' ' for c in word_text):
                                word_positions = positions[i:i + word_length]
                                word_start = word_positions[0].global_start
                                word_end = word_positions[-1].global_end

                                polygon = polygon_from_x0y0x1y1([
                                    word_start, 0, word_end, line_image.height
                                ])
                                points = points_from_polygon(
                                    coordinates_for_segment(
                                        polygon, None, line_coords))
                                # XXX Crop to line polygon?

                                word = WordType(id='%s_word%04d' %
                                                (line.id, word_no),
                                                Coords=CoordsType(points))
                                word.add_TextEquiv(
                                    TextEquivType(Unicode=word_text))

                                if self.parameter[
                                        'textequiv_level'] == 'glyph':
                                    for glyph_no, p in enumerate(
                                            word_positions):
                                        glyph_start = p.global_start
                                        glyph_end = p.global_end

                                        polygon = polygon_from_x0y0x1y1([
                                            glyph_start, 0, glyph_end,
                                            line_image.height
                                        ])
                                        points = points_from_polygon(
                                            coordinates_for_segment(
                                                polygon, None, line_coords))

                                        glyph = GlyphType(
                                            id='%s_glyph%04d' %
                                            (word.id, glyph_no),
                                            Coords=CoordsType(points))

                                        # Add predictions (= TextEquivs)
                                        char_index_start = 1  # Must start with 1, see https://ocr-d.github.io/page#multiple-textequivs
                                        for char_index, char in enumerate(
                                                _sort_chars(p),
                                                start=char_index_start):
                                            glyph.add_TextEquiv(
                                                TextEquivType(
                                                    Unicode=char.char,
                                                    index=char_index,
                                                    conf=char.probability))

                                        word.add_Glyph(glyph)

                                line.add_Word(word)
                                word_no += 1

                            i += word_length

            _page_update_higher_textequiv_levels('line', pcgts)

            # Add metadata about this operation and its runtime parameters:
            self.add_metadata(pcgts)
            file_id = make_file_id(input_file, self.output_file_grp)
            pcgts.set_pcGtsId(file_id)
            self.workspace.add_file(ID=file_id,
                                    file_grp=self.output_file_grp,
                                    pageId=input_file.pageId,
                                    mimetype=MIMETYPE_PAGE,
                                    local_filename=os.path.join(
                                        self.output_file_grp,
                                        file_id + '.xml'),
                                    content=to_xml(pcgts))
Exemplo n.º 4
0
class OCRProcessor(Processor):
	def __init__(self, options):
		super().__init__(options)
		self._options = options
		self._ocr = self._options["ocr"]

		if self._ocr == "FAKE":
			self._model_path = None
			self._models = []
			self._line_height = 48
			self._chunk_size = 1
		else:
			if not options["model"]:
				raise click.BadParameter(
					"Please specify a model path", param="model")
			self._model_path = Path(options["model"])

			models = list(self._model_path.glob("*.json"))
			if not options["legacy_model"]:
				models = [m for m in models if m.with_suffix(".h5").exists()]
			if len(models) < 1:
				raise FileNotFoundError(
					"no Calamari models found at %s" % self._model_path)
			self._models = models

			self._line_height = None
			self._chunk_size = None

		self._predictor = None
		self._voter = None

		self._ignored = RegionsFilter(options["ignore"])

		if self._ocr != "FULL":
			logging.getLogger().setLevel(logging.INFO)

	@property
	def processor_name(self):
		return __loader__.name

	def _load_models(self):
		if self._predictor is not None:
			return

		if self._ocr == "FAKE":
			return

		batch_size = self._options["batch_size"]
		if batch_size > 0:
			batch_size_kwargs = dict(batch_size=batch_size)
		else:
			batch_size_kwargs = dict()
		self._chunk_size = batch_size

		if len(self._models) == 1:
			self._predictor = Predictor(
				str(self._models[0]), **batch_size_kwargs)
			self._predict_kwargs = batch_size_kwargs
			self._voter = None
			self._line_height = int(self._predictor.model_params.line_height)
		else:
			logging.info("using Calamari voting with %d models." % len(self._models))
			self._predictor = MultiPredictor(
				checkpoints=[str(p) for p in self._models],
				**batch_size_kwargs)
			self._predict_kwargs = dict()
			self._voter = ConfidenceVoter()
			self._line_height = int(self._predictor.predictors[0].model_params.line_height)

	def artifacts(self):
		return [
			("reliable", Input(
				Artifact.LINES, Artifact.TABLES,
				stage=Stage.RELIABLE)),
			("output", Output(Artifact.OCR)),
		]

	def process(self, page_path: Path, reliable, output):
		self._load_models()

		lines = reliable.lines.by_path

		extractor = LineExtractor(
			reliable.tables,
			self._line_height,
			self._options,
			min_confidence=reliable.lines.min_confidence)

		min_width = 6
		min_height = 6

		names = []
		empty_names = []
		images = []
		for stem, im in extractor(lines, ignored=self._ignored):
			if im.width >= min_width and im.height >= min_height:
				names.append("/".join(stem))
				images.append(np.array(im))
			else:
				empty_names.append("/".join(stem))

		if self._ocr == "DRY":
			logging.info("will ocr the following lines:\n%s" % "\n".join(sorted(names)))
			return

		chunk_size = self._chunk_size
		if chunk_size <= 0:
			chunk_size = len(images)

		texts = []

		if self._ocr == "FAKE":
			for name in names:
				texts.append("text for %s." % name)
		else:
			for i in range(0, len(images), chunk_size):
				for prediction in self._predictor.predict_raw(
					images[i:i + chunk_size], progress_bar=False, **self._predict_kwargs):

					if self._voter is not None:
						prediction = self._voter.vote_prediction_result(prediction)
					texts.append(prediction.sentence)

		with output.ocr() as zf:
			for name, text in zip(names, texts):
				zf.writestr("%s.txt" % name, text)
			for name in empty_names:
				zf.writestr("%s.txt" % name, "")
Exemplo n.º 5
0
class CalamariRecognize(Processor):

    def __init__(self, *args, **kwargs):
        kwargs['ocrd_tool'] = OCRD_TOOL['tools']['ocrd-calamari-recognize']
        super(CalamariRecognize, self).__init__(*args, **kwargs)

    def _init_calamari(self):
        os.environ['TF_CPP_MIN_LOG_LEVEL'] = TF_CPP_MIN_LOG_LEVEL

        checkpoints = glob(self.parameter['checkpoint'])
        self.predictor = MultiPredictor(checkpoints=checkpoints)

        voter_params = VoterParams()
        voter_params.type = VoterParams.Type.Value(self.parameter['voter'].upper())
        self.voter = voter_from_proto(voter_params)

    def _make_file_id(self, input_file, n):
        file_id = input_file.ID.replace(self.input_file_grp, self.output_file_grp)
        if file_id == input_file.ID:
            file_id = concat_padded(self.output_file_grp, n)
        return file_id

    def process(self):
        """
        Performs the recognition.
        """

        self._init_calamari()

        for (n, input_file) in enumerate(self.input_files):
            page_id = input_file.pageId or input_file.ID
            log.info("INPUT FILE %i / %s", n, page_id)
            pcgts = page_from_file(self.workspace.download_file(input_file))

            page = pcgts.get_Page()
            page_image, page_xywh, page_image_info = self.workspace.image_from_page(page, page_id)

            for region in pcgts.get_Page().get_TextRegion():
                region_image, region_xywh = self.workspace.image_from_segment(region, page_image, page_xywh)

                textlines = region.get_TextLine()
                log.info("About to recognize %i lines of region '%s'", len(textlines), region.id)
                for (line_no, line) in enumerate(textlines):
                    log.debug("Recognizing line '%s' in region '%s'", line_no, region.id)

                    line_image, line_xywh = self.workspace.image_from_segment(line, region_image, region_xywh)
                    line_image_np = np.array(line_image, dtype=np.uint8)

                    raw_results = list(self.predictor.predict_raw([line_image_np], progress_bar=False))[0]
                    for i, p in enumerate(raw_results):
                        p.prediction.id = "fold_{}".format(i)

                    prediction = self.voter.vote_prediction_result(raw_results)
                    prediction.id = "voted"

                    line_text = prediction.sentence
                    line_conf = prediction.avg_char_probability

                    line.set_TextEquiv([TextEquivType(Unicode=line_text, conf=line_conf)])

            _page_update_higher_textequiv_levels('line', pcgts)

            file_id = self._make_file_id(input_file, n)
            self.workspace.add_file(
                ID=file_id,
                file_grp=self.output_file_grp,
                pageId=input_file.pageId,
                mimetype=MIMETYPE_PAGE,
                local_filename=os.path.join(self.output_file_grp, file_id + '.xml'),
                content=to_xml(pcgts))