예제 #1
0
"""
Press 's' to take a picture or 'l' to load one and start real-time
"""

import cv2
import numpy as np
from cam import MyCam

from fmatch import draw_match

MIN_MATCH_COUNT = 10

# Initiate SIFT detector
orb = cv2.ORB()
cam = MyCam()
cam.size = (640, 480)
img1 = img1 = cv2.imread('box.png', 0)

cv2.imshow('source', img1)
while True:

    img2 = cv2.flip(cv2.cvtColor(cam.read(), cv2.COLOR_BGR2GRAY), 1)
    k = cv2.waitKey(5)
    if k == ord('s'):
        img1 = img2.copy()
        cv2.imwrite('campic.png', img1)
    elif k == 27:
        break

    # find the keypoints and descriptors with ORB
    if k is not None:
예제 #2
0
Press 's' to take a picture or 'l' to load one and start real-time
"""

import cv2
import numpy as np
from cam import MyCam

from fmatch import draw_match


MIN_MATCH_COUNT = 10

# Initiate SIFT detector
sift = cv2.SIFT()
cam = MyCam()
cam.size = (640, 480)
img1 = img1 = cv2.imread('box.png', 0)

cv2.imshow('source', img1)
while True:
    
    img2 = cv2.flip(cv2.cvtColor(cam.read(), cv2.COLOR_BGR2GRAY), 1)
    k = cv2.waitKey(5)
    if k == ord('s'):
        img1 = img2.copy()
        cv2.imwrite('campic.png', img1)
    elif k== 27:
        break
    
    
    # find the keypoints and descriptors with SIFT
예제 #3
0
import cv2
import numpy as np
from cam import MyCam

from fmatch import draw_match


print __doc__

MIN_MATCH_COUNT = 10

# Initiate SIFT detector
sift = cv2.SIFT()
cam = MyCam()
cam.size = (640, 480)#(160, 120)
img1 = cv2.imread('box.png', 0)
cv2.imshow('source', img1)

if img1.shape[0] * img1.shape[1] > cam.size[0] * cam.size[1]:
    img1 = cv2.resize(img1, cam.size)

kp1, des1 = sift.detectAndCompute(img1,None)
    
while True:
    
    img2 = cv2.cvtColor(cam.read(), cv2.COLOR_BGR2GRAY)
    k = cv2.waitKey(5)
    if k == ord('s'):
        img1 = img2.copy()
        kp1, des1 = sift.detectAndCompute(img1,None)
예제 #4
0
"""
Press 's' to take a picture or 'l' to load one and start real-time
"""

import cv2
import numpy as np
from cam import MyCam

from fmatch import draw_match

MIN_MATCH_COUNT = 10

# Initiate SIFT detector
sift = cv2.SIFT()
cam = MyCam()
cam.size = (640, 480)  #(160, 120)
img1 = cv2.imread('box.png', 0)
cv2.imshow('source', img1)

if img1.shape[0] * img1.shape[1] > cam.size[0] * cam.size[1]:
    img1 = cv2.resize(img1, cam.size)

kp1, des1 = sift.detectAndCompute(img1, None)

while True:

    img2 = cv2.cvtColor(cam.read(), cv2.COLOR_BGR2GRAY)
    k = cv2.waitKey(5)
    if k == ord('s'):
        img1 = img2.copy()
        kp1, des1 = sift.detectAndCompute(img1, None)
예제 #5
0
def test_feature_matching_realtime(detetor=cv2.ORB()):
    from cam import MyCam
    """
    Press 's' to take a picture or 'l' to load one and start real-time
    """

    MIN_MATCH_COUNT = 10

    cam = MyCam()
    cam.size = (640, 480)
    img1 = img1 = cv2.imread('box.png', 0)

    cv2.imshow('source', img1)
    while True:
        
        img2 = cv2.flip(cv2.cvtColor(cam.read(), cv2.COLOR_BGR2GRAY), 1)
        k = cv2.waitKey(5)
        if k == ord('s'):
            img1 = img2.copy()
            cv2.imwrite('campic.png', img1)
        elif k== 27:
            break
        
        
        
        # find the keypoints and descriptors with ORB
        if k is not None:
            cv2.destroyWindow('preview') 
            kp1, des1 = detetor.detectAndCompute(img1,None)
            
        kp2, des2 = detetor.detectAndCompute(img2,None)
        
        
        # If nothing match then continue
        if des2 is None:
            img3 = img3 = draw_match(img1,kp1,img2,kp2,[])
            continue
        
        des1 = des1.astype(np.uint8, copy=False)    # Fix the data type
        des2 = des2.astype(np.uint8, copy=False)
        
        
        # Now match describers
        bf = cv2.BFMatcher(cv2.NORM_HAMMING)
        # matches = bf.match(des1,des2)
        
        matches = bf.knnMatch(des1,des2, k=2)
        
        # m = matches[0][0]
        # p1, p2 = np.float32(kp1[m.queryIdx].pt), np.float32(kp2[m.trainIdx].pt)
        # print m.distance, p1, p2
        
        # Apply ratio test
        good = []
        try:
            for m,n in matches:
                if m.distance < 0.7*n.distance:
                    good.append(m)
        except ValueError:
            good = []
        
        if len(good)>MIN_MATCH_COUNT:
            src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
            dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)

            M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
            matchesMask = mask.ravel().tolist()
            
            h,w = img1.shape
            pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
            dst = cv2.perspectiveTransform(pts,M)
            
            cv2.polylines(img2,[np.int32(dst)], True, (0,0,255) ,3)

        else:
            # print "Not enough matches are found - %d/%d" % (len(good),MIN_MATCH_COUNT)
            matchesMask = None
            good = []
        
        img3 = draw_match(img1,kp1,img2,kp2,good, matchesMask=matchesMask)
        
        
        cv2.imshow('matches', img3)
        
    print 'press any key to continue'