def train_sequence_classifier(): input_dim = 2000 cell_dim = 25 hidden_dim = 25 embedding_dim = 50 num_output_classes = 5 # Input variables denoting the features and label data features = input_variable(shape=input_dim, is_sparse=True) label = input_variable(num_output_classes, dynamic_axes=[Axis.default_batch_axis()]) # Instantiate the sequence classification model classifier_output = LSTM_sequence_classifer_net(features, num_output_classes, embedding_dim, hidden_dim, cell_dim) ce = cross_entropy_with_softmax(classifier_output, label) pe = classification_error(classifier_output, label) rel_path = r"../../../../Tests/EndToEndTests/Text/SequenceClassification/Data/Train.ctf" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration(feature_stream_name, input_dim, True, 'x'), StreamConfiguration(labels_stream_name, num_output_classes, False, 'y') ], 0) features_si = mb_source.stream_info(features) labels_si = mb_source.stream_info(label) # Instantiate the trainer object to drive the model training lr = lr = learning_rates_per_sample(0.0005) trainer = Trainer(classifier_output, ce, pe, [sgd_learner(classifier_output.owner.parameters(), lr)]) # Get minibatches of sequences to train with and perform model training minibatch_size = 200 training_progress_output_freq = 10 i = 0 while True: mb = mb_source.get_next_minibatch(minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = { features: mb[features_si].m_data, label: mb[labels_si].m_data } trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq) i += 1
def simple_mnist(): input_dim = 784 num_output_classes = 10 num_hidden_layers = 1 hidden_layers_dim = 200 # Input variables denoting the features and label data input = input_variable(input_dim, np.float32) label = input_variable(num_output_classes, np.float32) # Instantiate the feedforward classification model scaled_input = element_times(constant((), 0.00390625), input) netout = fully_connected_classifier_net(scaled_input, num_output_classes, hidden_layers_dim, num_hidden_layers, sigmoid) ce = cross_entropy_with_softmax(netout, label) pe = classification_error(netout, label) rel_path = r"../../../../Examples/Image/MNIST/Data/Train-28x28_cntk_text.txt" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration(feature_stream_name, input_dim), StreamConfiguration(labels_stream_name, num_output_classes) ]) features_si = mb_source.stream_info(feature_stream_name) labels_si = mb_source.stream_info(labels_stream_name) # Instantiate the trainer object to drive the model training lr = learning_rates_per_sample(0.003125) trainer = Trainer(netout, ce, pe, [sgd_learner(netout.owner.parameters(), lr)]) # Get minibatches of images to train with and perform model training minibatch_size = 32 num_samples_per_sweep = 60000 num_sweeps_to_train_with = 1 num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size training_progress_output_freq = 20 for i in range(0, int(num_minibatches_to_train)): mb = mb_source.get_next_minibatch(minibatch_size) # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = { input: mb[features_si].m_data, label: mb[labels_si].m_data } trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq)
def simple_mnist(): input_dim = 784 num_output_classes = 10 num_hidden_layers = 1 hidden_layers_dim = 200 # Input variables denoting the features and label data input = input_variable(input_dim, np.float32) label = input_variable(num_output_classes, np.float32) # Instantiate the feedforward classification model scaled_input = element_times(constant((), 0.00390625), input) netout = fully_connected_classifier_net(scaled_input, num_output_classes, hidden_layers_dim, num_hidden_layers, sigmoid) ce = cross_entropy_with_softmax(netout, label) pe = classification_error(netout, label) rel_path = os.path.join(*"../../../../Examples/Image/MNIST/Data/Train-28x28_cntk_text.txt".split("/")) path = os.path.normpath(os.path.join(abs_path, rel_path)) if not os.path.exists(path): readme_file = os.path.normpath(os.path.join(os.path.dirname(path), "..", "README.md")) raise RuntimeError("File '%s' does not exist. Please follow the instructions at %s to download and prepare it."%(path, readme_file)) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration( feature_stream_name, input_dim ), StreamConfiguration( labels_stream_name, num_output_classes) ]) features_si = mb_source.stream_info(feature_stream_name) labels_si = mb_source.stream_info(labels_stream_name) # Instantiate the trainer object to drive the model training lr = learning_rates_per_sample(0.003125) trainer = Trainer(netout, ce, pe, [sgd_learner(netout.owner.parameters(), lr)]) # Get minibatches of images to train with and perform model training minibatch_size = 32 num_samples_per_sweep = 60000 num_sweeps_to_train_with = 1 num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size training_progress_output_freq = 20 for i in range(0, int(num_minibatches_to_train)): mb = mb_source.get_next_minibatch(minibatch_size) # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = {input : mb[features_si].m_data, label : mb[labels_si].m_data} trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq)
def train_sequence_classifier(): input_dim = 2000; cell_dim = 25; hidden_dim = 25; embedding_dim = 50; num_output_classes = 5; # Input variables denoting the features and label data features = input_variable(shape=input_dim, is_sparse=True) label = input_variable(num_output_classes, dynamic_axes = [Axis.default_batch_axis()]) # Instantiate the sequence classification model classifier_output = LSTM_sequence_classifer_net(features, num_output_classes, embedding_dim, hidden_dim, cell_dim) ce = cross_entropy_with_softmax(classifier_output, label) pe = classification_error(classifier_output, label) rel_path = r"../../../../Tests/EndToEndTests/Text/SequenceClassification/Data/Train.ctf" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration( feature_stream_name, input_dim, True, 'x' ), StreamConfiguration( labels_stream_name, num_output_classes, False, 'y')], 0) features_si = mb_source.stream_info(features) labels_si = mb_source.stream_info(label) # Instantiate the trainer object to drive the model training lr = lr = learning_rates_per_sample(0.0005) trainer = Trainer(classifier_output, ce, pe, [sgd_learner(classifier_output.owner.parameters(), lr)]) # Get minibatches of sequences to train with and perform model training minibatch_size = 200 training_progress_output_freq = 10 i = 0; while True: mb = mb_source.get_next_minibatch(minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = {features : mb[features_si].m_data, label : mb[labels_si].m_data} trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq) i += 1
def ffnet(debug_output=True): input_dim = 2 num_output_classes = 2 num_hidden_layers = 2 hidden_layers_dim = 50 # Input variables denoting the features and label data input = input_variable((input_dim), np.float32) label = input_variable((num_output_classes), np.float32) # Instantiate the feedforward classification model netout = fully_connected_classifier_net(input, num_output_classes, hidden_layers_dim, num_hidden_layers, sigmoid) ce = cross_entropy_with_softmax(netout, label) pe = classification_error(netout, label) # Instantiate the trainer object to drive the model training trainer = Trainer(netout, ce, pe, [sgd_learner(netout.parameters(), lr=0.02)]) # Get minibatches of training data and perform model training minibatch_size = 25 num_samples_per_sweep = 10000 num_sweeps_to_train_with = 2 num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size training_progress_output_freq = 20 for i in range(0, int(num_minibatches_to_train)): features, labels = generate_random_data(minibatch_size, input_dim, num_output_classes) # Specify the mapping of input variables in the model to actual minibatch data to be trained with trainer.train_minibatch({input: features, label: labels}) if debug_output: print_training_progress(trainer, i, training_progress_output_freq) test_features, test_labels = generate_random_data(minibatch_size, input_dim, num_output_classes) avg_error = trainer.test_minibatch({ input: test_features, label: test_labels }) return avg_error
def cifar_resnet(): image_height = 32 image_width = 32 num_channels = 3 num_classes = 10 feats_stream_name = 'features' labels_stream_name = 'labels' minibatch_source = create_mb_source(feats_stream_name, labels_stream_name, image_height, image_width, num_channels, num_classes) features_si = minibatch_source.stream_info(feats_stream_name) labels_si = minibatch_source.stream_info(labels_stream_name) # Input variables denoting the features and label data image_input = input_variable((num_channels, image_height, image_width), features_si.m_element_type) label_var = input_variable((num_classes), features_si.m_element_type) # Instantiate the resnet classification model classifier_output = resnet_classifer(image_input, num_classes) ce = cross_entropy_with_softmax(classifier_output, label_var) pe = classification_error(classifier_output, label_var) # Instantiate the trainer object to drive the model training lr = learning_rates_per_sample(0.0078125) trainer = Trainer(classifier_output, ce, pe, [sgd_learner(classifier_output.owner.parameters(), lr)]) # Get minibatches of images to train with and perform model training mb_size = 32 training_progress_output_freq = 20 num_mbs = 1000 for i in range(0, num_mbs): mb = minibatch_source.get_next_minibatch(mb_size) # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = { image_input: mb[features_si].m_data, label_var: mb[labels_si].m_data } trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq)
def cifar_resnet(): image_height = 32 image_width = 32 num_channels = 3 num_classes = 10 feats_stream_name = 'features' labels_stream_name = 'labels' minibatch_source = create_mb_source(feats_stream_name, labels_stream_name, image_height, image_width, num_channels, num_classes) features_si = minibatch_source.stream_info(feats_stream_name) labels_si = minibatch_source.stream_info(labels_stream_name) # Input variables denoting the features and label data image_input = input_variable((num_channels, image_height, image_width), features_si.m_element_type) label_var = input_variable((num_classes), features_si.m_element_type) # Instantiate the resnet classification model classifier_output = resnet_classifer(image_input, num_classes) ce = cross_entropy_with_softmax(classifier_output, label_var) pe = classification_error(classifier_output, label_var) # Instantiate the trainer object to drive the model training lr = learning_rates_per_sample(0.0078125) trainer = Trainer(classifier_output, ce, pe, [sgd_learner(classifier_output.owner.parameters(), lr)]) # Get minibatches of images to train with and perform model training mb_size = 32 training_progress_output_freq = 20 num_mbs = 1000 for i in range(0, num_mbs): mb=minibatch_source.get_next_minibatch(mb_size) # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = {image_input : mb[features_si].m_data, label_var : mb[labels_si].m_data} trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq)