示例#1
0
def train_sequence_classifier():
    input_dim = 2000
    cell_dim = 25
    hidden_dim = 25
    embedding_dim = 50
    num_output_classes = 5

    # Input variables denoting the features and label data
    features = input_variable(shape=input_dim, is_sparse=True)
    label = input_variable(num_output_classes,
                           dynamic_axes=[Axis.default_batch_axis()])

    # Instantiate the sequence classification model
    classifier_output = LSTM_sequence_classifer_net(features,
                                                    num_output_classes,
                                                    embedding_dim, hidden_dim,
                                                    cell_dim)

    ce = cross_entropy_with_softmax(classifier_output, label)
    pe = classification_error(classifier_output, label)

    rel_path = r"../../../../Tests/EndToEndTests/Text/SequenceClassification/Data/Train.ctf"
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path)
    feature_stream_name = 'features'
    labels_stream_name = 'labels'

    mb_source = text_format_minibatch_source(path, [
        StreamConfiguration(feature_stream_name, input_dim, True, 'x'),
        StreamConfiguration(labels_stream_name, num_output_classes, False, 'y')
    ], 0)

    features_si = mb_source.stream_info(features)
    labels_si = mb_source.stream_info(label)

    # Instantiate the trainer object to drive the model training
    lr = lr = learning_rates_per_sample(0.0005)
    trainer = Trainer(classifier_output, ce, pe,
                      [sgd_learner(classifier_output.owner.parameters(), lr)])

    # Get minibatches of sequences to train with and perform model training
    minibatch_size = 200
    training_progress_output_freq = 10
    i = 0
    while True:
        mb = mb_source.get_next_minibatch(minibatch_size)
        if len(mb) == 0:
            break

        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        arguments = {
            features: mb[features_si].m_data,
            label: mb[labels_si].m_data
        }
        trainer.train_minibatch(arguments)

        print_training_progress(trainer, i, training_progress_output_freq)

        i += 1
示例#2
0
def simple_mnist():
    input_dim = 784
    num_output_classes = 10
    num_hidden_layers = 1
    hidden_layers_dim = 200

    # Input variables denoting the features and label data
    input = input_variable(input_dim, np.float32)
    label = input_variable(num_output_classes, np.float32)

    # Instantiate the feedforward classification model
    scaled_input = element_times(constant((), 0.00390625), input)
    netout = fully_connected_classifier_net(scaled_input, num_output_classes,
                                            hidden_layers_dim,
                                            num_hidden_layers, sigmoid)

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    rel_path = r"../../../../Examples/Image/MNIST/Data/Train-28x28_cntk_text.txt"
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path)
    feature_stream_name = 'features'
    labels_stream_name = 'labels'

    mb_source = text_format_minibatch_source(path, [
        StreamConfiguration(feature_stream_name, input_dim),
        StreamConfiguration(labels_stream_name, num_output_classes)
    ])
    features_si = mb_source.stream_info(feature_stream_name)
    labels_si = mb_source.stream_info(labels_stream_name)

    # Instantiate the trainer object to drive the model training
    lr = learning_rates_per_sample(0.003125)
    trainer = Trainer(netout, ce, pe,
                      [sgd_learner(netout.owner.parameters(), lr)])

    # Get minibatches of images to train with and perform model training
    minibatch_size = 32
    num_samples_per_sweep = 60000
    num_sweeps_to_train_with = 1
    num_minibatches_to_train = (num_samples_per_sweep *
                                num_sweeps_to_train_with) / minibatch_size
    training_progress_output_freq = 20
    for i in range(0, int(num_minibatches_to_train)):
        mb = mb_source.get_next_minibatch(minibatch_size)

        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        arguments = {
            input: mb[features_si].m_data,
            label: mb[labels_si].m_data
        }
        trainer.train_minibatch(arguments)

        print_training_progress(trainer, i, training_progress_output_freq)
示例#3
0
def simple_mnist():
    input_dim = 784
    num_output_classes = 10
    num_hidden_layers = 1
    hidden_layers_dim = 200

    # Input variables denoting the features and label data
    input = input_variable(input_dim, np.float32)
    label = input_variable(num_output_classes, np.float32)

    # Instantiate the feedforward classification model
    scaled_input = element_times(constant((), 0.00390625), input)
    netout = fully_connected_classifier_net(scaled_input, num_output_classes, hidden_layers_dim, num_hidden_layers, sigmoid)

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    rel_path = os.path.join(*"../../../../Examples/Image/MNIST/Data/Train-28x28_cntk_text.txt".split("/"))
    path = os.path.normpath(os.path.join(abs_path, rel_path))
    if not os.path.exists(path):
        readme_file = os.path.normpath(os.path.join(os.path.dirname(path), "..", "README.md"))
        raise RuntimeError("File '%s' does not exist. Please follow the instructions at %s to download and prepare it."%(path, readme_file))
    feature_stream_name = 'features'
    labels_stream_name = 'labels'
    
    mb_source = text_format_minibatch_source(path, [ 
                    StreamConfiguration( feature_stream_name, input_dim ), 
                    StreamConfiguration( labels_stream_name, num_output_classes) ])
    features_si = mb_source.stream_info(feature_stream_name)
    labels_si = mb_source.stream_info(labels_stream_name)

    # Instantiate the trainer object to drive the model training
    lr = learning_rates_per_sample(0.003125)
    trainer = Trainer(netout, ce, pe, [sgd_learner(netout.owner.parameters(), lr)])

    # Get minibatches of images to train with and perform model training
    minibatch_size = 32
    num_samples_per_sweep = 60000
    num_sweeps_to_train_with = 1
    num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size
    training_progress_output_freq = 20
    for i in range(0, int(num_minibatches_to_train)):
        mb = mb_source.get_next_minibatch(minibatch_size)

        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        arguments = {input : mb[features_si].m_data, label : mb[labels_si].m_data}
        trainer.train_minibatch(arguments)

        print_training_progress(trainer, i, training_progress_output_freq)
示例#4
0
def train_sequence_classifier():
    input_dim = 2000;
    cell_dim = 25;
    hidden_dim = 25;
    embedding_dim = 50;
    num_output_classes = 5;

    # Input variables denoting the features and label data
    features = input_variable(shape=input_dim, is_sparse=True)
    label = input_variable(num_output_classes, dynamic_axes = [Axis.default_batch_axis()])

    # Instantiate the sequence classification model
    classifier_output = LSTM_sequence_classifer_net(features, num_output_classes, embedding_dim, hidden_dim, cell_dim)

    ce = cross_entropy_with_softmax(classifier_output, label)
    pe = classification_error(classifier_output, label)

    rel_path = r"../../../../Tests/EndToEndTests/Text/SequenceClassification/Data/Train.ctf"
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path)
    feature_stream_name = 'features'
    labels_stream_name = 'labels'

    mb_source = text_format_minibatch_source(path, [
                    StreamConfiguration( feature_stream_name, input_dim, True, 'x' ),
                    StreamConfiguration( labels_stream_name, num_output_classes, False, 'y')], 0)

    features_si = mb_source.stream_info(features)
    labels_si = mb_source.stream_info(label)

    # Instantiate the trainer object to drive the model training
    lr = lr = learning_rates_per_sample(0.0005)
    trainer = Trainer(classifier_output, ce, pe, [sgd_learner(classifier_output.owner.parameters(), lr)])

    # Get minibatches of sequences to train with and perform model training
    minibatch_size = 200
    training_progress_output_freq = 10
    i = 0;
    while True:
        mb = mb_source.get_next_minibatch(minibatch_size)
        if  len(mb) == 0:
            break

        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        arguments = {features : mb[features_si].m_data, label : mb[labels_si].m_data}
        trainer.train_minibatch(arguments)

        print_training_progress(trainer, i, training_progress_output_freq)

        i += 1
示例#5
0
def ffnet(debug_output=True):
    input_dim = 2
    num_output_classes = 2
    num_hidden_layers = 2
    hidden_layers_dim = 50

    # Input variables denoting the features and label data
    input = input_variable((input_dim), np.float32)
    label = input_variable((num_output_classes), np.float32)

    # Instantiate the feedforward classification model
    netout = fully_connected_classifier_net(input, num_output_classes,
                                            hidden_layers_dim,
                                            num_hidden_layers, sigmoid)

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    # Instantiate the trainer object to drive the model training
    trainer = Trainer(netout, ce, pe,
                      [sgd_learner(netout.parameters(), lr=0.02)])

    # Get minibatches of training data and perform model training
    minibatch_size = 25
    num_samples_per_sweep = 10000
    num_sweeps_to_train_with = 2
    num_minibatches_to_train = (num_samples_per_sweep *
                                num_sweeps_to_train_with) / minibatch_size
    training_progress_output_freq = 20
    for i in range(0, int(num_minibatches_to_train)):
        features, labels = generate_random_data(minibatch_size, input_dim,
                                                num_output_classes)
        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        trainer.train_minibatch({input: features, label: labels})
        if debug_output:
            print_training_progress(trainer, i, training_progress_output_freq)

    test_features, test_labels = generate_random_data(minibatch_size,
                                                      input_dim,
                                                      num_output_classes)
    avg_error = trainer.test_minibatch({
        input: test_features,
        label: test_labels
    })
    return avg_error
示例#6
0
文件: CifarResNet.py 项目: rdbox/CNTK
def cifar_resnet():
    image_height = 32
    image_width = 32
    num_channels = 3
    num_classes = 10
    feats_stream_name = 'features'
    labels_stream_name = 'labels'
    minibatch_source = create_mb_source(feats_stream_name, labels_stream_name,
                                        image_height, image_width,
                                        num_channels, num_classes)
    features_si = minibatch_source.stream_info(feats_stream_name)
    labels_si = minibatch_source.stream_info(labels_stream_name)

    # Input variables denoting the features and label data
    image_input = input_variable((num_channels, image_height, image_width),
                                 features_si.m_element_type)
    label_var = input_variable((num_classes), features_si.m_element_type)

    # Instantiate the resnet classification model
    classifier_output = resnet_classifer(image_input, num_classes)

    ce = cross_entropy_with_softmax(classifier_output, label_var)
    pe = classification_error(classifier_output, label_var)

    # Instantiate the trainer object to drive the model training
    lr = learning_rates_per_sample(0.0078125)
    trainer = Trainer(classifier_output, ce, pe,
                      [sgd_learner(classifier_output.owner.parameters(), lr)])

    # Get minibatches of images to train with and perform model training
    mb_size = 32
    training_progress_output_freq = 20
    num_mbs = 1000
    for i in range(0, num_mbs):
        mb = minibatch_source.get_next_minibatch(mb_size)

        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        arguments = {
            image_input: mb[features_si].m_data,
            label_var: mb[labels_si].m_data
        }
        trainer.train_minibatch(arguments)

        print_training_progress(trainer, i, training_progress_output_freq)
示例#7
0
def cifar_resnet():
    image_height = 32
    image_width = 32
    num_channels = 3
    num_classes = 10
    feats_stream_name = 'features'
    labels_stream_name = 'labels'
    minibatch_source = create_mb_source(feats_stream_name, labels_stream_name, 
                        image_height, image_width, num_channels, num_classes)
    features_si = minibatch_source.stream_info(feats_stream_name)
    labels_si = minibatch_source.stream_info(labels_stream_name)

    # Input variables denoting the features and label data
    image_input = input_variable((num_channels, image_height, image_width), features_si.m_element_type)
    label_var = input_variable((num_classes), features_si.m_element_type)

    # Instantiate the resnet classification model
    classifier_output = resnet_classifer(image_input, num_classes)

    ce = cross_entropy_with_softmax(classifier_output, label_var)
    pe = classification_error(classifier_output, label_var)

    # Instantiate the trainer object to drive the model training
    lr = learning_rates_per_sample(0.0078125)
    trainer = Trainer(classifier_output, ce, pe, [sgd_learner(classifier_output.owner.parameters(), lr)])

    # Get minibatches of images to train with and perform model training
    mb_size = 32
    training_progress_output_freq = 20
    num_mbs = 1000
    for i in range(0, num_mbs):
        mb=minibatch_source.get_next_minibatch(mb_size)

        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        arguments = {image_input : mb[features_si].m_data, label_var : mb[labels_si].m_data}
        trainer.train_minibatch(arguments)

        print_training_progress(trainer, i, training_progress_output_freq)