예제 #1
0
    def testSimulation(self):
        T = range(100)
        U = np.sin(T)

        # For now, just check calling syntax
        # TODO: add checks on output of simulations
        tout, yout = step_response(self.siso_ss1d)
        tout, yout = step_response(self.siso_ss1d, T)
        tout, yout = impulse_response(self.siso_ss1d, T)
        tout, yout = impulse_response(self.siso_ss1d)
        tout, yout, xout = forced_response(self.siso_ss1d, T, U, 0)
        tout, yout, xout = forced_response(self.siso_ss2d, T, U, 0)
        tout, yout, xout = forced_response(self.siso_ss3d, T, U, 0)
예제 #2
0
def test_Ny2_Nu2(i, j, zero_Pzw=True, Ts=0.008):
    """ Correct impulse response for y in R and u in R.
    """
    P = random_dtime_sys(5, 5, Ts)
    Pzw, Pzu, Pyw, Pyu = Ss.get_partitioned_transfer_matrices(P, 2, 2)
    if zero_Pzw:
        Pzw = Ss.tf_blocks(np.zeros((3, 3)), dt=Ts)
    weight = np.random.randn(12)
    # weight = np.array([0, 0, 0., 1., 0.0, 0.0])  # for debug
    Tsim = np.arange(30) * Ts
    z = co.tf([1, 0], [1], Ts)
    Q00 = Ts * (weight[0] + weight[1] * z ** (-1) + weight[2] * z ** (-2))
    Q01 = Ts * (weight[3] + weight[4] * z ** (-1) + weight[5] * z ** (-2))
    Q10 = Ts * (weight[6] + weight[7] * z ** (-1) + weight[8] * z ** (-2))
    Q11 = Ts * (weight[9] + weight[10] * z ** (-1) + weight[11] * z ** (-2))

    # expected result
    H_expected = Pzw[i, j] + (Pzu[i, 0] * Q00 * Pyw[0, j]
                              + Pzu[i, 0] * Q01 * Pyw[1, j]
                              + Pzu[i, 1] * Q10 * Pyw[0, j]
                              + Pzu[i, 1] * Q11 * Pyw[1, j])
    _, imp_expected = co.impulse_response(H_expected, Tsim)
    imp_expected = imp_expected[0, :]

    # actual result
    imp_actual = Ss.Qsyn.obtain_time_response_var(weight, (i, j), Tsim, Pzw, Pzu, Pyw)

    # # debug plot
    # plt.plot(imp_actual)
    # plt.plot(imp_expected, '--')
    # plt.show()

    np.testing.assert_allclose(imp_expected, imp_actual, atol=1e-8)
def graficado(valor_ajustado_de_la_deslizadera_del_tiempo, tamaño_impulso,
              tamaño_escalon, tamaño_rampa, boton_pulsado, G0):

    fig.clf()

    retardo = eval(input_del_retardo_en_la_ventana.get())

    if boton_pulsado == 'Impulso':
        t, y = control.impulse_response(
            G0 * tamaño_impulso,
            T=(valor_ajustado_de_la_deslizadera_del_tiempo))
    if boton_pulsado == 'Escalon':
        t, y = control.step_response(
            G0 * tamaño_escalon,
            T=(valor_ajustado_de_la_deslizadera_del_tiempo))
    if boton_pulsado == 'Rampa':
        t, y = control.step_response(
            G0 * tamaño_rampa / s,
            T=(valor_ajustado_de_la_deslizadera_del_tiempo))
    if boton_pulsado == 'Arbitraria':
        t, y, xout = control.forced_response(G0,
                                             T=(t_experimental),
                                             U=(u_experimental))

    t_a_dibujar, y_a_dibujar = ajusta_el_retardo_segun_el_input_de_la_ventana(
        t, y, retardo)

    fig.add_subplot(111).plot(t_a_dibujar, y_a_dibujar)
    canvas.draw()
예제 #4
0
def impulse(tf_list=[], N=100, T=None, name=None):

    data = []
    T_max = get_T_max(tf_list, T=T, N=N)

    for index, tf in enumerate(tf_list):
        if ctl.isctime(tf):
            T = np.linspace(0, T_max, N)
            line_shape = "linear"
        else:
            T = np.arange(0, T_max, tf.dt)
            line_shape = "hv"

        t, y = ctl.impulse_response(tf, T=T)
        tf_name = "tf {}".format(index + 1)
        data.append({
            "x": np.ravel(t),
            "y": np.ravel(y),
            "name": tf_name,
            "mode": "lines",
            "showlegend": False,
            "line_shape": line_shape
        })

    layout = default_layout("time (s)", "response", name)
    fig = go.Figure(data, layout=layout)
    return fig
예제 #5
0
def FunBotao1(FuncaoControlador):
    print(FuncaoControlador)
    print(type(FuncaoControlador))

    x,y = FuncaoControlador.split(';')
    print(x)
    print(type(x))
    print(y)
    print(type(y))

    x = np.fromstring(x, dtype=int, sep = ',')
    y = np.fromstring(y, dtype=int, sep = ',')
    print(x)
    print(type(x))
    print(y)
    print(type(y))

    
    G1 = co.tf(x, y)
    print(G1)
    G1

    t = np.linspace(0, 10, 100)
    t1, y1 = co.impulse_response(G1,t)



    plt.plot(t1, y1)
    plt.xlabel('time(s)')
    plt.ylabel('amplitude')
    plt.grid()
    plt.show()
예제 #6
0
def plot_response(sys, T=None, U=0.0, impulse=True, step=True) -> None:
    if impulse:
        t, yout = control.impulse_response(sys, T=T, X0=U)
        plot_params(t, yout)
    if step:
        t, yout = control.step_response(sys, T=T, X0=U)
        plot_params(t, yout)
    return
	def plotImpulseResponse(self, CE, axx = None, Plot=True):
		t, q = control.impulse_response(CE)
		if axx is not None:
			axx.plot(t,q, marker = np.random.choice(self.marker), label = 'P:%s, I:%s, D:%s' %(self.P, self.I, self.D))
			axx.legend()
		if Plot:
			plt.plot(t,q, marker = np.random.choice(self.marker), label = 'P:%s, I:%s, D:%s' %(self.P, self.I, self.D))
			plt.show()
		return t,q
예제 #8
0
def plot_response(sys, T=None, U=0.0, X0=np.zeros(4), impulse=False, step=False, lsim=False, sym=True, input=0) -> None:
    if impulse:
        t, yout = control.impulse_response(sys, T=T, X0=X0, input=0)
        plot_params(t, yout, sym=sym)
    if step:
        t, yout = control.step_response(sys, T=T, X0=X0, input=0)
        plot_params(t, yout, sym=sym)
    if lsim:
        t, yout, xout = control.forced_response(sys, U=U, T=T, X0=X0)
        plot_params(t, yout, sym=sym)
    return
예제 #9
0
def impulse(tf_list=[], N=200, T=None, name=None):

    data = []
    T = get_T(tf_list, N=N, T=T)

    for index, tf in enumerate(tf_list):
        t, y = ctl.impulse_response(tf, T=T)
        tf_name = "tf {}".format(index + 1)
        data.append({"x": t, "y": y, "name": tf_name, "showlegend": False})

    layout = default_layout("time (s)", "response", name)
    fig = go.Figure(data, layout=layout)
    fig.show()
예제 #10
0
def main():

    # Create a state space pendulum

    # Set variables
    m = 1  # Mass
    l = 1  # Length

    sys = create_pendulum(m, l)

    # Impulse response
    t, y = control.impulse_response(sys)

    plt.plot(t, y)
    plt.xlabel('time [s]')
    plt.ylabel('theta [rad]')
    plt.grid(True)
    plt.show()
예제 #11
0
	def time (tf, method = 'step', plot = False):
	    print "==================================================================";
	    print "Poles:   ", ctrl.pole (tf);
            print "Zeros:   ", ctrl.zero (tf);
	    dc = ctrl.dcgain (tf);

	    print "DC gain: ", dc;
	    if (method == 'step'):
	       t, y = ctrl.step_response (tf);
	    if (method == 'impulse'):
	       t, y = ctrl.impulse_response (tf);
 
	    ys = filter (lambda l: l >= 0.98 * dc, y);
            i = np.ndarray.tolist(y).index (min (ys));
            print "Ts: ", t[i];
	    print "Overshoot: ", (max (y) / dc) - 1;	
	    i = np.ndarray.tolist(y).index (max (y));
	    print "Tr: ", t[i];
	
	    if (plot == True):
		p = Plotter ({'grid' : True});
		p.plot ([(t, y)]);

            return t, y
예제 #12
0
def test_Ny1_Nu1(i, j, Ts=0.008):
    """ Correct impulse response for y in R and u in R.
    """
    P = random_dtime_sys(5, 5, Ts)
    Pzw, Pzu, Pyw, Pyu = Ss.get_partitioned_transfer_matrices(P, 1, 1)
    weight = np.array([0.1, 0.4, 0, 0.2])
    Tsim = np.arange(100) * Ts
    z = co.tf([1, 0], [1], Ts)
    Q = Ts * (0.1 + 0.4 * z ** (-1) + 0 + 0.2 * z ** (-3))

    # expected result
    H_expected = Pzw[i, j] + Pzu[i, 0] * Q * Pyw[0, j]
    _, imp_expected = co.impulse_response(H_expected, Tsim)
    imp_expected = imp_expected[0, :]

    # actual result
    imp_actual = Ss.Qsyn.obtain_time_response_var(weight, (i, j), Tsim, Pzw, Pzu, Pyw)

    # # debug plot
    # plt.plot(imp_actual)
    # plt.plot(imp_expected, '--')
    # plt.show()

    np.testing.assert_allclose(imp_expected, imp_actual, atol=1e-5)
예제 #13
0
    G2d_num = G2d_num / den_coeff[z**2]  # Monic numerator
    G2d_den = G2d_den / den_coeff[z**2]  # Monic denominator
    G2d_monic = G2d_num / G2d_den  # Monic trasnfer function

    # In[Plot saturation]
    I = np.arange(0., 20., 0.1)

    fig, ax = plt.subplots(1, 1, sharex=True, figsize=(4, 3))
    ax.plot(I, L_val * 1e6 * saturation_formula(I), 'k')
    ax.grid(True)
    ax.set_xlabel('Inductor current $i_L$ (A)', fontsize=14)
    ax.set_ylabel('Inductance $L$ ($\mu$H)', fontsize=14)

    if not os.path.exists("fig"):
        os.makedirs("fig")
    fig.savefig(os.path.join("fig", "RLC_characteristics.pdf"),
                bbox_inches='tight')

    # In[Linear model analysis]
    import control

    ss_model = control.ss(A_nominal, B_nominal, np.array([1, 0]), np.array(0))
    ss_model_dt = control.c2d(ss_model, Td_val)

    t = np.arange(200) * Td_val
    t, y = control.impulse_response(ss_model_dt, t)
    #    t, y = control.step_response(ss_model, t)

    plt.figure()
    plt.plot(y)
K_i = 1
K_d = 0.3

tf_controller = tf([K_d, K_p, K_i], [1, 0])

# Assume reference input is Sun's angle which is a step function.
tf_reference = tf([target_position], [1, 0])
# Closed loop transfer function and output can be calculated.
tf_closed_loop = (tf_plant*tf_controller)/(1+tf_plant*tf_controller)
tf_output = tf_reference*tf_closed_loop

# Now by finding output transfer function's impulse reponse, we can see it's behaviour in time domain.
duration = 5
# Output will be computed for this many seconds.
t = np.linspace(0, duration, num = int(duration/(TIME_STEP*1e-3)))
t, output = impulse_response(tf_output, t)

# Let's plot the panel's expected angle vs time.
plt.plot(t, output)
plt.plot(t, target_position*np.ones(len(t)))
plt.ylabel(f'Expected Angle')
plt.xlabel('Time (s)')
plt.show()

# Compare the performance of pid controller to the other controllers.

# Controller function is defined.
def get_controller_output(K_p, K_i, K_d, errors):
    return (K_p*errors[-1] + K_d*np.gradient(errors)[-1]/(TIME_STEP*1e-3) + K_i*np.sum(errors)*(TIME_STEP*1e-3))
    # Gradient function is used in order to compute the numerical derivative of the error.
                          F - b * v) * np.cos(theta)) / (l * (M + m * (1 - np.cos(theta) ** 2)))
        return der

    # Brutal forward euler discretization
    Ad = np.eye(nx) + Ac * Ts_MPC
    Bd = Bc * Ts_MPC

    # Force disturbance
    wu = 10  # bandwidth of the force disturbance
    std_du = 0.3
    Ts = 1e-3
    Hu = control.TransferFunction([1], [1 / wu, 1])
    Hu = Hu * Hu
    Hud = control.matlab.c2d(Hu, Ts)
    t_imp = np.arange(5000) * Ts
    t, y = control.impulse_response(Hud, t_imp)
    y = y[0]
    std_tmp = np.sqrt(np.sum(y ** 2))  # np.sqrt(trapz(y**2,t))
    Hu = Hu / (std_tmp) * std_du
    N_sim = 100000
    e = np.random.randn(N_sim)
    te = np.arange(N_sim) * Ts
    _, d_fast, _ = control.forced_response(Hu, te, e)
    d_fast = d_fast[1000:]

    # Reference input and states
    t_ref_vec = np.array([0.0,  10.0,   20.0,   30.0,   40.0])
    p_ref_vec = np.array([0.0,  0.3,    0.3,    0.0,    0.0])
    rp_fun = interp1d(t_ref_vec, p_ref_vec, kind='zero')
    r_fun = lambda t: np.array([rp_fun(t), 0.0, 0.0, 0.0])
def num_model_asym_data(output=1,
                        t_lookup=3717,
                        t_limit=14,
                        eigenmotion="dutch roll",
                        block_fuel=2700,
                        passenger_weight=771,
                        CY_b=-0.7500,
                        Cn_r=-0.2061,
                        Cn_p=-0.0602,
                        Cl_r=0.2376,
                        Cl_p=-0.7108,
                        input=1):
    # Outputs: 1 - phi / 2 - pb/2V / 3 - rb/2V

    t_interval = t_lookup + t_limit

    # Flight data imported
    mat = scipy.io.loadmat('flight_actual.mat')
    flight_data = mat['flightdata']
    flight_data = flight_data[0, 0]

    # Get data location
    index = int((t_lookup - flight_data['time'][0][0][0][0][0]) / 0.1)
    n_points = int(t_limit / 0.1) + 1

    # Obtain correct weight (manoeuvre start) and velocity, get system
    used_fuel = flight_data['lh_engine_FU'][0][0][0][index] + flight_data[
        'rh_engine_FU'][0][0][0][index]
    mass_event = (block_fuel - used_fuel + 9165) * 0.453592 + passenger_weight
    tas_event = flight_data['Dadc1_tas'][0][0][0][index] * 0.514444

    # obtain correct rho
    h_p = flight_data['Dadc1_alt'][0][0][0][index] * 0.3048
    p = 101325 * (1 + (-0.0065 * h_p / 288.15))**(-9.81 / (-0.0065 * 287.05))
    T = flight_data['Dadc1_sat'][0][0][0][index] + 273.15
    rho = p / (287.05 * T)

    # Obtain correspondent flight data
    data_event = np.zeros((n_points, 2))
    if output == 0:
        for i in range(n_points):
            data_event[i, 0] = flight_data['time'][0][0][0][0][
                index + i] - flight_data['time'][0][0][0][0][index]
    if output == 1:
        for i in range(n_points):
            data_event[i, 0] = flight_data['time'][0][0][0][0][
                index + i] - flight_data['time'][0][0][0][0][index]
            data_event[i,
                       1] = flight_data['Ahrs1_Roll'][0][0][0][index +
                                                               i]  # Output phi
    elif output == 2:
        for i in range(n_points):
            data_event[i, 0] = flight_data['time'][0][0][0][0][
                index + i] - flight_data['time'][0][0][0][0][index]
            data_event[i, 1] = flight_data['Ahrs1_bRollRate'][0][0][0][
                index + i]  # Output pb/2V
    elif output == 3:
        for i in range(n_points):
            data_event[i, 0] = flight_data['time'][0][0][0][0][
                index + i] - flight_data['time'][0][0][0][0][index]
            data_event[i, 1] = flight_data['Ahrs1_bYawRate'][0][0][0][
                index + i]  # Output rb/2V
    t1 = data_event[:, 0]
    y1 = data_event[:, 1] * m.pi / 180

    if eigenmotion == "dutch roll":
        input_delta_a = (
            flight_data['delta_a'][0][0][0][index:index + n_points] * m.pi /
            180 -
            flight_data['delta_a'][0][0][0][index + n_points] * m.pi / 180)
        input_delta_r = -flight_data['delta_r'][0][0][0][index:index +
                                                         n_points] * m.pi / 180

    if eigenmotion == "aperiodic":
        input_delta_a = -(
            flight_data['delta_a'][0][0][0][index:index + n_points] * m.pi /
            180 -
            flight_data['delta_a'][0][0][0][index + n_points] * m.pi / 180)
        input_delta_r = -flight_data['delta_r'][0][0][0][index:index +
                                                         n_points] * m.pi / 180

    if eigenmotion == "spiral":
        input_delta_a = -(
            flight_data['delta_a'][0][0][0][index:index + n_points] * m.pi /
            180 -
            flight_data['delta_a'][0][0][0][index + n_points] * m.pi / 180)
        input_delta_r = -(
            flight_data['delta_r'][0][0][0][index:index + n_points] * m.pi /
            180 -
            flight_data['delta_r'][0][0][0][index + n_points] * m.pi / 180)

    input_tot = np.array([input_delta_a[:, 0], input_delta_r[:, 0]])

    sys = ss_asym(rho=rho,
                  m=mass_event,
                  theta_0=flight_data['Ahrs1_Pitch'][0][0][0][index] * m.pi /
                  180,
                  v=tas_event,
                  CY_b=CY_b,
                  Cn_r=Cn_r,
                  Cn_p=Cn_p,
                  Cl_r=Cl_r,
                  Cl_p=Cl_p)
    # t2, out, p2 = control.forced_response(sys, T=t1, U=input_tot,X0=[0., -flight_data['Ahrs1_Roll'][0][0][0][index][0]* m.pi / 180,  -flight_data['Ahrs1_bRollRate'][0][0][0][index][0]* m.pi / 180, -flight_data['Ahrs1_bYawRate'][0][0][0][index][0]* m.pi / 180])
    t2, out = control.impulse_response(sys, t1, input=input)
    # t2, out, p2 = control.forced_response(sys, T=t1, U=input_tot,
    #                                       X0=[0., flight_data['Ahrs1_Roll'][0][0][0][index][0] * m.pi / 180,
    #                                           flight_data['Ahrs1_bRollRate'][0][0][0][index][0] * m.pi / 180,
    #                                           flight_data['Ahrs1_bYawRate'][0][0][0][index][0] * m.pi / 180])

    y2 = out[output, :]  # Outputs: 1 - phi / 2 - pb/2V / 3 - rb/2V

    # flight data, model response, time vectors and input vectors
    return y1, y2, t1, t2, input_delta_a, input_delta_r, t_lookup, t_interval
예제 #17
0
    ghat_reg = np.linalg.inv(P_prior @ PHI.T @ PHI + sigma_e ** 2 * np.eye(m)) @ P_prior @ PHI.T @ Y
    ghat_reg = ghat_reg.ravel()

    # Covariance of the Bayesian estimate
    P_post = P_prior - P_prior @ PHI.T @ np.linalg.inv(PHI @ P_prior @ PHI.T + sigma_e ** 2 * np.eye(N)) @ PHI @ P_prior # slow, try a faster implementation...
    sigma_reg = np.sqrt(np.diag(P_post))
    ghat_reg_max = ghat_reg + 3*sigma_reg
    ghat_reg_min = ghat_reg - 3*sigma_reg

    # In[Evaluate the true inpulse response of the RLC]
    ss_model = control.ss(examples.RLC.symbolic_RLC.A_nominal, examples.RLC.symbolic_RLC.B_nominal, np.array([1, 0]), np.array(0))
    ss_model_dt = control.c2d(ss_model, Td)

    T_imp = np.arange(m+1) * Td
    T_imp, g_true = control.impulse_response(ss_model_dt, T_imp)
    T_imp = np.arange(T_imp.size)


    # In[Plot estimated models]

    fig, ax = plt.subplots(1, 2)
    ax[0].plot(T, ghat_ML, 'r')
    ax[0].fill_between(T, ghat_ML_min, ghat_ML_max, where=ghat_ML_max >= ghat_ML_min, facecolor='red', interpolate=True, alpha=0.2)
    ax[0].plot(T_imp, g_true, 'k')
    ax[1].plot(T, ghat_reg, 'g')
    ax[1].fill_between(T, ghat_reg_min, ghat_reg_max, where=ghat_reg_max >= ghat_reg_min, facecolor='green', alpha=0.2)
    ax[1].plot(T_imp, g_true, 'k')

    # In[Prior model plot]
    sigma_prio = np.sqrt(np.diag(P_prior))
def simulate_pendulum_MPC(sim_options):

    use_NN_model = get_parameter(sim_options, 'use_NN_model')

    if use_NN_model:
        Ts_fit = 10e-3  # model was fitted with this sampling time
        ss_model = CartPoleStateSpaceModel(Ts=Ts_fit)
        nn_solution = NeuralStateSpaceSimulator(ss_model, Ts=Ts_fit)
        model_name = "model_SS_1step_nonoise.pkl"
        nn_solution.ss_model.load_state_dict(
            torch.load(os.path.join("models", model_name)))
        f_ODE = nn_solution.f_ODE
    else:
        f_ODE = f_ODE_wrapped

    seed_val = get_parameter(sim_options, 'seed_val')
    if seed_val is not None:
        np.random.seed(seed_val)

    Ac = get_parameter(sim_options, 'Ac')
    Bc = get_parameter(sim_options, 'Bc')

    Cc = np.array([[1., 0., 0., 0.], [0., 0., 1., 0.]])

    Dc = np.zeros((2, 1))

    [nx, nu] = Bc.shape  # number of states and number or inputs
    ny = np.shape(Cc)[0]

    Ts_MPC = get_parameter(sim_options, 'Ts_MPC')
    ratio_Ts = int(Ts_MPC // Ts_fast)
    Ts_MPC = (
        (Ts_MPC //
         Ts_fast)) * Ts_fast  # make Ts_MPC an integer multiple of Ts_fast

    # Brutal forward euler discretization
    Ad = np.eye(nx) + Ac * Ts_MPC
    Bd = Bc * Ts_MPC
    Cd = Cc
    Dd = Dc

    # Standard deviation of the measurement noise on position and angle

    std_npos = get_parameter(sim_options, 'std_npos')
    std_nphi = get_parameter(sim_options, 'std_nphi')

    # Force disturbance
    std_dF = get_parameter(sim_options, 'std_dF')

    # disturbance power spectrum
    w_F = get_parameter(sim_options,
                        'w_F')  # bandwidth of the force disturbance
    tau_F = 1 / w_F
    Hu = control.TransferFunction([1], [1 / w_F, 1])
    Hu = Hu * Hu
    Hud = control.matlab.c2d(Hu, Ts_MPC)
    N_sim_imp = tau_F / Ts_MPC * 20
    t_imp = np.arange(N_sim_imp) * Ts_MPC
    t, y = control.impulse_response(Hud, t_imp)
    y = y[0]
    std_tmp = np.sqrt(np.sum(y**2))  # np.sqrt(trapz(y**2,t))
    Hu = Hu / (std_tmp) * std_dF

    N_skip = 1  #int(20 * tau_F // Ts_MPC) # skip initial samples to get a regime sample of d
    t_sim_d = get_parameter(sim_options, 'len_sim')  # simulation length (s)
    N_sim_d = int(t_sim_d // Ts_MPC)
    N_sim_d = N_sim_d + N_skip + 1
    e = np.random.randn(N_sim_d)
    te = np.arange(N_sim_d) * Ts_MPC
    _, d, _ = control.forced_response(Hu, te, e)
    d = d.ravel()
    p_ref = d[N_skip:]
    #td = np.arange(len(d)) * Ts_fast

    Np = get_parameter(sim_options, 'Np')
    Nc = get_parameter(sim_options, 'Nc')

    Qx = get_parameter(sim_options, 'Qx')
    QxN = get_parameter(sim_options, 'QxN')
    Qu = get_parameter(sim_options, 'Qu')
    QDu = get_parameter(sim_options, 'QDu')

    # Reference input and states
    xref_fun = get_parameter(sim_options, 'xref_fun')  # reference state
    xref_fun_v = np.vectorize(xref_fun, signature='()->(n)')

    t0 = 0
    xref_MPC = xref_fun(t0)
    uref = get_parameter(sim_options, 'uref')
    uminus1 = np.array(
        [0.0]
    )  # input at time step negative one - used to penalize the first delta u at time instant 0. Could be the same as uref.

    # Constraints
    xmin = np.array([-1000, -1000, -1000, -1000])
    xmax = np.array([1000, 1000.0, 1000, 1000])

    umin = np.array([-10])
    umax = np.array([10])

    Dumin = np.array([-100 * Ts_MPC])
    Dumax = np.array([100 * Ts_MPC])

    # Initialize simulation system
    phi0 = 0.0  #10*2*np.pi/360
    x0 = np.array([0, 0, phi0, 0])  # initial state
    #    system_dyn = ode(f_ODE_wrapped).set_integrator('vode', method='bdf') #    dopri5
    system_dyn = ode(f_ODE).set_integrator('dopri5')
    system_dyn.set_initial_value(x0, t0)
    system_dyn.set_f_params(0.0)

    QP_eps_rel = get_parameter(sim_options, 'QP_eps_rel')
    QP_eps_abs = get_parameter(sim_options, 'QP_eps_abs')

    # Emergency exit conditions

    EMERGENCY_STOP = False
    EMERGENCY_POS = 30.0
    EMERGENCY_ANGLE = 90 * DEG_TO_RAD

    K = MPCController(Ad,
                      Bd,
                      Np=Np,
                      Nc=Nc,
                      x0=x0,
                      xref=xref_MPC,
                      uminus1=uminus1,
                      Qx=Qx,
                      QxN=QxN,
                      Qu=Qu,
                      QDu=QDu,
                      xmin=xmin,
                      xmax=xmax,
                      umin=umin,
                      umax=umax,
                      Dumin=Dumin,
                      Dumax=Dumax,
                      eps_feas=1e3,
                      eps_rel=QP_eps_rel,
                      eps_abs=QP_eps_abs)

    try:
        K.setup(solve=True)  # setup initial problem and also solve it
    except:
        EMERGENCY_STOP = True

    if not EMERGENCY_STOP:
        if K.res.info.status != 'solved':
            EMERGENCY_STOP = True

    # Basic Kalman filter design
    Q_kal = get_parameter(sim_options, 'Q_kal')
    R_kal = get_parameter(sim_options, 'R_kal')
    L, P, W = kalman_design_simple(Ad,
                                   Bd,
                                   Cd,
                                   Dd,
                                   Q_kal,
                                   R_kal,
                                   type='predictor')
    x0_est = x0
    KF = LinearStateEstimator(x0_est, Ad, Bd, Cd, Dd, L)

    # Simulate in closed loop
    len_sim = get_parameter(sim_options, 'len_sim')  # simulation length (s)
    nsim = int(
        np.ceil(len_sim / Ts_MPC)
    )  # simulation length(timesteps) # watch out! +1 added, is it correct?
    t_vec = np.zeros((nsim, 1))
    t_calc_vec = np.zeros(
        (nsim, 1))  # computational time to get MPC solution (+ estimator)
    status_vec = np.zeros((nsim, 1))
    x_vec = np.zeros((nsim, nx))
    x_ref_vec = np.zeros((nsim, nx))
    y_vec = np.zeros((nsim, ny))
    y_meas_vec = np.zeros((nsim, ny))
    y_est_vec = np.zeros((nsim, ny))
    x_est_vec = np.zeros((nsim, nx))
    u_vec = np.zeros((nsim, nu))
    x_MPC_pred = np.zeros(
        (nsim, Np + 1, nx))  # on-line predictions from the Kalman Filter

    nsim_fast = int(len_sim // Ts_fast)
    t_vec_fast = np.zeros((nsim_fast, 1))
    x_vec_fast = np.zeros(
        (nsim_fast, nx))  # finer integration grid for performance evaluation
    x_ref_vec_fast = np.zeros(
        (nsim_fast, nx))  # finer integration grid for performance evaluatio
    u_vec_fast = np.zeros(
        (nsim_fast, nu))  # finer integration grid for performance evaluatio
    Fd_vec_fast = np.zeros((nsim_fast, nu))  #
    t_int_vec_fast = np.zeros((nsim_fast, 1))
    emergency_vec_fast = np.zeros((nsim_fast, 1))  #

    t_pred_all = t0 + np.arange(nsim + Np + 1) * Ts_MPC
    Xref_MPC_all = xref_fun_v(t_pred_all)

    t_step = t0
    x_step = x0
    u_MPC = None
    for idx_fast in range(nsim_fast):

        ## Determine step type: fast simulation only or MPC step
        idx_MPC = idx_fast // ratio_Ts
        run_MPC = (idx_fast % ratio_Ts) == 0

        # Output for step i
        # Ts_MPC outputs
        if run_MPC:  # it is also a step of the simulation at rate Ts_MPC
            t_vec[idx_MPC, :] = t_step
            x_vec[idx_MPC, :] = x_step  #system_dyn.y
            xref_MPC = np.array([p_ref[idx_MPC], 0.0, 0.0, 0.0])
            #xref_MPC = xref_fun(t_step)  # reference state
            t_pred = t_step + np.arange(Np + 1) * Ts_MPC
            x_ref_vec[idx_MPC, :] = xref_MPC

            if not EMERGENCY_STOP:
                #                u_MPC, info_MPC = K.output(return_x_seq=True, return_status=True)  # u[i] = k(\hat x[i]) possibly computed at time instant -1
                u_MPC, info_MPC = K.output(
                    return_status=True, return_x_seq=True
                )  # u[i] = k(\hat x[i]) possibly computed at time instant -1
            else:
                u_MPC = np.zeros(nu)

            if not EMERGENCY_STOP:
                if info_MPC['status'] != 'solved':
                    EMERGENCY_STOP = True

            if not EMERGENCY_STOP:
                #pass
                x_MPC_pred[idx_MPC, :, :] = info_MPC[
                    'x_seq']  # x_MPC_pred[i,i+1,...| possibly computed at time instant -1]
            u_vec[idx_MPC, :] = u_MPC

            y_step = Cd.dot(x_step)  # y[i] from the system
            ymeas_step = np.copy(y_step)
            ymeas_step[0] += std_npos * np.random.randn()
            ymeas_step[1] += std_nphi * np.random.randn()
            y_vec[idx_MPC, :] = y_step
            y_meas_vec[idx_MPC, :] = ymeas_step
            if not EMERGENCY_STOP:
                status_vec[idx_MPC, :] = (info_MPC['status'] != 'solved')

            if np.abs(ymeas_step[0]) > EMERGENCY_POS or np.abs(
                    ymeas_step[1]) > EMERGENCY_ANGLE:
                EMERGENCY_STOP = True

        # Ts_fast outputs
        t_vec_fast[idx_fast, :] = t_step
        x_vec_fast[idx_fast, :] = x_step  #system_dyn.y
        x_ref_vec_fast[idx_fast, :] = xref_MPC
        u_fast = u_MPC
        u_vec_fast[idx_fast, :] = u_fast
        Fd_vec_fast[idx_fast, :] = 0.0
        emergency_vec_fast[idx_fast, :] = EMERGENCY_STOP

        ## Update to step i+1

        # Controller simulation step at rate Ts_MPC
        if run_MPC:
            time_calc_start = time.perf_counter()
            # Kalman filter: update and predict
            #KF.update(ymeas_step) # \hat x[i|i]
            #KF.predict(u_MPC)    # \hat x[i+1|i]
            KF.predict_update(u_MPC, ymeas_step)
            # MPC update
            if not EMERGENCY_STOP:
                #Xref_MPC = Xref_MPC_all[idx_MPC:idx_MPC + Np + 1]
                K.update(
                    KF.x, u_MPC,
                    xref=xref_MPC)  # update with measurement and reference
                #K.update(KF.x, u_MPC, xref=xref_MPC)  # update with measurement and reference
            t_calc_vec[idx_MPC, :] = time.perf_counter() - time_calc_start
            if t_calc_vec[idx_MPC, :] > 2 * Ts_MPC:
                EMERGENCY_STOP = True

        # System simulation step at rate Ts_fast
        time_integrate_start = time.perf_counter()
        system_dyn.set_f_params(u_fast)
        system_dyn.integrate(t_step + Ts_fast)
        x_step = system_dyn.y
        #x_step = x_step + f_ODE(t_step, x_step, u_fast)*Ts_fast
        t_int_vec_fast[
            idx_fast, :] = time.perf_counter() - time_integrate_start

        # Time update
        t_step += Ts_fast

    simout = {
        't': t_vec,
        'x': x_vec,
        'u': u_vec,
        'y': y_vec,
        'y_meas': y_meas_vec,
        'x_ref': x_ref_vec,
        'x_MPC_pred': x_MPC_pred,
        'status': status_vec,
        'Fd_fast': Fd_vec_fast,
        't_fast': t_vec_fast,
        'x_fast': x_vec_fast,
        'x_ref_fast': x_ref_vec_fast,
        'u_fast': u_vec_fast,
        'emergency_fast': emergency_vec_fast,
        'KF': KF,
        'K': K,
        'nsim': nsim,
        'Ts_MPC': Ts_MPC,
        't_calc': t_calc_vec,
        't_int_fast': t_int_vec_fast,
        'use_NN_model': use_NN_model
    }

    return simout
예제 #19
0
    plt.plot(t, y_hat, 'b', label="$\hat y$")
    plt.plot(t, y_meas - y_hat, 'r', label="$e$")
    plt.grid(True)
    plt.xlabel('Time (s)')
    plt.ylabel('Voltage (V)')
    plt.legend(loc='upper right')
    plt.savefig('WH_fit.pdf')

    # In[Inspect linear model]

    n_imp = 128
    G1_num, G1_den = G1.get_tfdata()
    G1_sys = control.TransferFunction(G1_num, G1_den, ts)
    plt.figure()
    plt.title("$G_1$ impulse response")
    _, y_imp = control.impulse_response(G1_sys, np.arange(n_imp) * ts)
    #    plt.plot(G1_num)
    plt.plot(y_imp)
    plt.savefig(os.path.join("models", model_name, "G1_imp.pdf"))
    plt.figure()
    mag_G1, phase_G1, omega_G1 = control.bode(G1_sys, omega_limits=[1e2, 1e5])
    plt.suptitle("$G_1$ bode plot")
    plt.savefig(os.path.join("models", model_name, "G1_bode.pdf"))

    # G2_b = G2.G.weight.detach().numpy()[0, 0, ::-1]
    G2_num, G2_den = G2.get_tfdata()
    G2_sys = control.TransferFunction(G2_num, G2_den, ts)
    plt.figure()
    plt.title("$G_2$ impulse response")
    _, y_imp = control.impulse_response(G2_sys, np.arange(n_imp) * ts)
    plt.plot(y_imp)
예제 #20
0
for elem in co.pole(h2):
    print(f'{elem: .2f}')
print("poles (k=5)")
for elem in co.pole(h3):
    print(f'{elem: .2f}')

plt.figure(1)
h1_map = co.pzmap(h1, plot=True, title='pzmap (k=2)')
plt.figure(2)
h2_map = co.pzmap(h2, plot=True, title='pzmap (k=3)')
plt.figure(3)
h3_map = co.pzmap(h3, plot=True, title='pzmap (k=5)')

t = np.linspace(0, 10, 1000)

t1, imp1 = co.impulse_response(h1, t)
t2, imp2 = co.impulse_response(h2, t)
t3, imp3 = co.impulse_response(h3, t)

t4, stp1 = co.step_response(h1, t)
t5, stp2 = co.step_response(h2, t)
t6, stp3 = co.step_response(h3, t)

fig1, axs = plt.subplots(3, 1)
fig1.suptitle("Impulse Response")
axs[0].plot(t1, imp1)
axs[1].plot(t2, imp2)
axs[2].plot(t3, imp3)

axs[0].set_ylabel("Amplitude")
axs[1].set_ylabel("Amplitude")
예제 #21
0
                              control_zero, conf, 0)
            plt.semilogx(f,
                         20.0 * np.log10(np.abs(pid_results[2])),
                         linewidth="3",
                         label='%s *k_i' % ff)
        unity = np.ones(len(s))
        plt.semilogx(f, 20.0 * np.log10(np.abs(unity)), '--')

        plt.legend()
        plt.show()

    elif args.f == 'ir':
        print("Impulse response")
        T = np.arange(0, 0.5, 0.0001)  # Frequency from 1 to 10^6 Hz
        sys = control.tf2ss([1], [1 / wc, 1])
        T, yout = control.impulse_response(sys, T)
        #plt.plot(T, yout)

        print("Step response")
        cavity = control.tf([1], [1 / wc, 1])
        kp = 10
        ki = 5
        controller = control.tf([kp, ki], [1, 0])
        ol = cavity * controller
        sys = control.tf2ss(ol)
        T, yout = control.step_response(sys, T)
        plt.plot(T, yout)
        plt.show()

    else:
        lpf(f, wc, cavity)
예제 #22
0
    def test_squeeze(self, fcn, nstate, nout, ninp, squeeze, shape1, shape2):
        # Figure out if we have SciPy 1+
        scipy0 = StrictVersion(sp.__version__) < '1.0'

        # Define the system
        if fcn == ct.tf and (nout > 1 or ninp > 1) and not slycot_check():
            pytest.skip("Conversion of MIMO systems to transfer functions "
                        "requires slycot.")
        else:
            sys = fcn(ct.rss(nstate, nout, ninp, strictly_proper=True))

        # Generate the time and input vectors
        tvec = np.linspace(0, 1, 8)
        uvec = np.ones((sys.ninputs, 1)) @ np.reshape(np.sin(tvec), (1, 8))

        #
        # Pass squeeze argument and make sure the shape is correct
        #
        # For responses that are indexed by the input, check against shape1
        # For responses that have no/fixed input, check against shape2
        #

        # Impulse response
        if isinstance(sys, StateSpace):
            # Check the states as well
            _, yvec, xvec = ct.impulse_response(
                sys, tvec, squeeze=squeeze, return_x=True)
            if sys.issiso():
                assert xvec.shape == (sys.nstates, 8)
            else:
                assert xvec.shape == (sys.nstates, sys.ninputs, 8)
        else:
            _, yvec = ct.impulse_response(sys, tvec, squeeze=squeeze)
        assert yvec.shape == shape1

        # Step response
        if isinstance(sys, StateSpace):
            # Check the states as well
            _, yvec, xvec = ct.step_response(
                sys, tvec, squeeze=squeeze, return_x=True)
            if sys.issiso():
                assert xvec.shape == (sys.nstates, 8)
            else:
                assert xvec.shape == (sys.nstates, sys.ninputs, 8)
        else:
            _, yvec = ct.step_response(sys, tvec, squeeze=squeeze)
        assert yvec.shape == shape1

        # Initial response (only indexed by output)
        if isinstance(sys, StateSpace):
            # Check the states as well
            _, yvec, xvec = ct.initial_response(
                sys, tvec, 1, squeeze=squeeze, return_x=True)
            assert xvec.shape == (sys.nstates, 8)
        else:
            _, yvec = ct.initial_response(sys, tvec, 1, squeeze=squeeze)
        assert yvec.shape == shape2

        # Forced response (only indexed by output)
        if isinstance(sys, StateSpace):
            # Check the states as well
            _, yvec, xvec = ct.forced_response(
                sys, tvec, uvec, 0, return_x=True, squeeze=squeeze)
            assert xvec.shape == (sys.nstates, 8)
        else:
            # Just check the input/output response
            _, yvec = ct.forced_response(sys, tvec, uvec, 0, squeeze=squeeze)
        assert yvec.shape == shape2

        # Test cases where we choose a subset of inputs and outputs
        _, yvec = ct.step_response(
            sys, tvec, input=ninp-1, output=nout-1, squeeze=squeeze)
        if squeeze is False:
            # Shape should be unsqueezed
            assert yvec.shape == (1, 1, 8)
        else:
            # Shape should be squeezed
            assert yvec.shape == (8, )

        # For InputOutputSystems, also test input/output response
        if isinstance(sys, ct.InputOutputSystem) and not scipy0:
            _, yvec = ct.input_output_response(sys, tvec, uvec, squeeze=squeeze)
            assert yvec.shape == shape2

        #
        # Changing config.default to False should return 3D frequency response
        #
        ct.config.set_defaults('control', squeeze_time_response=False)

        _, yvec = ct.impulse_response(sys, tvec)
        if squeeze is not True or sys.ninputs > 1 or sys.noutputs > 1:
            assert yvec.shape == (sys.noutputs, sys.ninputs, 8)

        _, yvec = ct.step_response(sys, tvec)
        if squeeze is not True or sys.ninputs > 1 or sys.noutputs > 1:
            assert yvec.shape == (sys.noutputs, sys.ninputs, 8)

        _, yvec = ct.initial_response(sys, tvec, 1)
        if squeeze is not True or sys.noutputs > 1:
            assert yvec.shape == (sys.noutputs, 8)

        if isinstance(sys, ct.StateSpace):
            _, yvec, xvec = ct.forced_response(
                sys, tvec, uvec, 0, return_x=True)
            assert xvec.shape == (sys.nstates, 8)
        else:
            _, yvec = ct.forced_response(sys, tvec, uvec, 0)
        if squeeze is not True or sys.noutputs > 1:
            assert yvec.shape == (sys.noutputs, 8)

        # For InputOutputSystems, also test input_output_response
        if isinstance(sys, ct.InputOutputSystem) and not scipy0:
            _, yvec = ct.input_output_response(sys, tvec, uvec)
            if squeeze is not True or sys.noutputs > 1:
                assert yvec.shape == (sys.noutputs, 8)
예제 #23
0
 def plotImpulseResponse(self):
     t, q = control.impulse_response(self.CE)
     plt.plot(t, q)
     plt.show()
예제 #24
0
    def init_via_simulation(Pssd_design, A1dss, T=5):
        self = AtomicFIRController()
        nu = A1dss.outputs
        ny = A1dss.inputs
        nxc = A1dss.states
        nx = Pssd_design.states
        dT = Pssd_design.dt
        self.T = T
        self.dT = dT
        self.NT = int(T / dT)
        self.nx = nx
        self.ny = ny
        self.nxc = nxc
        self.nu = nu
        self.ny = ny
        self.nw = Pssd_design.inputs - A1dss.outputs
        self.nz = Pssd_design.outputs - A1dss.inputs

        # closed-loop response, check stability
        Pssd_cl = Pssd_design.lft(A1dss)
        w, q = np.linalg.eig(Pssd_cl.A)
        wmax = w[np.argmax(np.abs(w))]
        if np.abs(wmax) > 1:
            print(" -- Closed-loop system UNSTABLE. w_max={:}"
                  " ----> Return None".format(wmax))
            return None
        else:
            print(" -- Closed-loop system STABLE. w_max={:}".format(wmax))

        # control systems
        self.plant_ol = Pssd_design
        self.plant_cl = Pssd_cl
        self.exec_ctrl = A1dss

        # matrix impulse response
        A, B1, B2, C1, C2, D11, D12, D21, D22 = map(
            np.array, Ss.get_partitioned_mats(Pssd_design, nu, ny))
        Ak, Bk, Ck, Dk = A1dss.A, A1dss.B, A1dss.C, A1dss.D
        assert np.all(D22 == 0)

        # Concatenate system matrices to find the matrices of the ss
        # rep of the impulse response mapping
        # [R N] =   A_cb  |  B_cb
        # [M L]     ------|-------
        #           C_cb  |  D_cb
        A_cb = np.block([[A + B2.dot(Dk).dot(C2), B2.dot(Ck)],
                         [Bk.dot(C2), Ak]])
        B_cb = np.block([[np.eye(nx), B2.dot(Dk)],
                         [np.zeros((nxc, nx)), Bk]])
        C_cb = np.block([[np.eye(nx), np.zeros((nx, nxc))],
                         [Dk.dot(C2), Ck]])
        D_cb = np.block([[np.zeros((nx, nx)), np.zeros((nx, ny))],
                         [np.zeros((nu, nx)), Dk]])
        P_resp_dss = co.ss(A_cb, B_cb, C_cb, D_cb, dT)

        # Compute impulse responses of the matrices R, N, M, L
        Tarr = np.arange(0, T, dT)  # 5 sec horizon
        NT = Tarr.shape[0]
        mtrx_impulses = []
        for i in range(self.nx + self.ny):
            _, yarr = co.impulse_response(
                P_resp_dss, Tarr, input=i, transpose=True)
            if np.linalg.norm(yarr[-1]) > 1e-10:
                raise(ValueError("Matrix Impulse response has non-zero norm at the last time-step! ({:}) "
                                 "Consider increasing horizont T. (Current val={:})".format(
                                     np.linalg.norm(yarr[-1]), T)))
            mtrx_impulses.append(yarr)
        mtrx_impulses = np.stack(mtrx_impulses, axis=2)

        # Individual responses
        self.R = mtrx_impulses[:, :self.nx, :self.nx]
        self.N = mtrx_impulses[:, :self.nx, self.nx:self.nx + self.ny]
        self.M = mtrx_impulses[:, self.nx:self.nx + self.nu, :self.nx]
        self.L = mtrx_impulses[:, self.nx:self.nx + self.nu, self.nx:self.nx + self.ny]
        self.MB2 = self.M@B2

        # Output Impulse responses H (from control input w to output z)
        output_impulses = []
        for i in range(self.nw):
            _, yarr = co.impulse_response(
                Pssd_cl, Tarr, input=i, transpose=True
            )
            # no need to check for finite horizon since H is a linear
            # combination of the matrix responses
            output_impulses.append(yarr)
        self.H = np.stack(output_impulses, axis=2)

        # frequency response of the mapping
        W = Ss.dft_matrix(self.NT)
        self.H_fft = np.zeros_like(self.H) * 1j
        for i in range(self.nw):
            for j in range(self.nz):
                self.H_fft[:, i, j] = [email protected][:, i, j]
        return self
예제 #25
0
import control as co
import numpy as np
import matplotlib.pyplot as plt

G1 = co.tf(
    [2, 5],
    [1, 2, 3])  # 2s + 5 / s^2 + 2s + 3 --- Provided only the coeficients

G2 = 5 * co.tf(np.poly([-2, -5]), np.poly(
    [-4, -5, -9]))  # Provided the 'zeros' and the 'poles' of the function

t = np.linspace(0, 10, 1000)
t1, y1 = co.impulse_response(G1, t)

plt.plot(t1, y1)
plt.xlabel('time (s)')
plt.ylabel('amplitude')
plt.grid()
예제 #26
0
# Simulation time and sampling time
simulation_time = np.arange(0., 4 * time_constants[-1], 0.1)

# Creating the axes
fig, axs = plt.subplots(3, figsize=(12, 8))

#------------------------ IMPULSE --------------------------#
# Plotting the input
axs[0].axvline(0, ymin=0.04, ymax=0.96, color='k', ls='--', label='Input')
axs[0].plot(0, 1, 'ko')

# Creating the transfer function and then plotting the impulse response
for T in time_constants:
    G = 1. / ((T * s) + 1)
    t, y = control.impulse_response(G, T=simulation_time)
    axs[0].plot(t, y, label='T = {}s'.format(T))

# Setting the graph's labels and title
axs[0].set_title('Impulse Response for a First Order System')
axs[0].set_xlabel('t(s)')
axs[0].set_ylabel('Amplitude')
axs[0].legend()

#------------------------ STEP --------------------------#
# Plotting the input
u = 0 * simulation_time
u[:] = 1
axs[1].plot(simulation_time, u, 'k--', label='Input')
axs[1].axvline(0, ymin=0.04, ymax=0.96, color='k', ls='--')
예제 #27
0
#plt.yscale('log')
#plt.yticks([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
plt.xlim(0, 4)
plt.plot(omega, mag)
plt.plot(omega, phase)

mag, phase, omega = H.freqresp(omega)
mag = np.reshape(mag, -1)
phase = np.reshape(phase, -1)
plt.figure()
plt.grid(True)
plt.xlim(0, 4)
plt.plot(omega, mag)
plt.plot(omega, phase)

T, yout = control.impulse_response(H, range(0, 200))
plt.figure()
plt.grid(True)
plt.plot(T, yout)

#impulse response
N = 201
u = [1]
h = ifft([H(np.exp(complex(0, 2 * math.pi * k / N))) for k in range(0, N - 1)])
H_re = np.convolve(u, h)
T = np.linspace(0, 200, 200)
plt.figure()
plt.grid(True)
plt.plot(T, H_re.real)

#dft
예제 #28
0
    def problem_b3():
        m_val = 0.425  # mass
        g_val = 9.81  # acceleration due to gravity
        d_val = 0.42  # natural length of spring
        delta_val = 0.65  # x(max) - distance to electromagnet
        r_val = 0.125  # ball radius
        R_val = 53  # resistance of electromagnet
        L0_val = 0.12  # inductance
        L1_val = 0.025  # positive constant
        alpha_val = 1.2  # positive constant
        c_val = 6.815
        k_val = 1880  # spring
        b_damper_val = 10.4  # damper
        phi_val = np.deg2rad(42)  # 90 - angle of slope
        slope_val = np.deg2rad(48)  # angle of slope

        m, g, d, delta, r, R, L0, L1, a, c, k, b_damper, b, phi, x1, x2, x3, V = \
            sym.symbols('m, g, d, delta, r, R, L0, L1, a, c, k, b_damper, b, phi, x1, x2, x3, V', real=True,
                        positive=True)

        # Equations Used

        x_min = d + (m * g * (math.sin(np.deg2rad(48)))) / k
        x_max = delta
        x_min_val = x_min.subs([(d, d_val), (m, m_val), (g, g_val),
                                (phi, phi_val), (k, k_val)])
        x_max_val = x_max.subs([(delta, delta_val)])
        x = (0.75 * x_min_val) + (0.25 * x_max_val)
        print("X: " + str(x))

        I = sym.sqrt((((m_val * g_val * math.sin(slope_val)) -
                       (k_val * (x - d_val))) / (-c_val)) * (delta_val - x)**2)
        print("I: " + str(I))

        a_equation = ((10 * c_val * I) / (3 * m_val * ((delta_val - x)**2)))
        b_equation = ((10 * c_val * I**2) /
                      (3 * m_val * ((delta_val - x)**3))) - ((5 * k_val) /
                                                             (3 * m_val))
        c_equation = (5 * b_damper_val) / (3 * m_val)

        a_equation_value = float(a_equation.subs([(c, c_val), (m, m_val)]))
        b_equation_value = float(b_equation.subs([(k, k_val), (m, m_val)]))

        f_equation = float(L0_val + (L1_val * math.exp(-alpha_val *
                                                       (d_val - x))))

        transfer_function = ctrl.TransferFunction([a_equation_value], [
            f_equation, ((c_equation * f_equation) + R_val),
            ((-b_equation_value * f_equation) + (c_equation * R_val)),
            (-b_equation_value * R_val)
        ])

        t_final = 1
        sampling_rate = 2000
        sampling_time = 1 / sampling_rate
        n_points = t_final * sampling_rate
        t_span = np.linspace(0, t_final, n_points)

        t_imp, x1_imp = ctrl.impulse_response(transfer_function, t_span)
        t_step, x1_step = ctrl.step_response(transfer_function, t_span)

        plt.plot(t_imp, x1_imp, 'r', label='Impulse Response')
        plt.plot(t_step, x1_step, 'b', label='Step Response')
        plt.xlabel("Time (s)")
        plt.ylabel("Response (m)")
        plt.grid()
        plt.legend()
        plt.show()
def simulate_pendulum_MPC(sim_options):

    seed_val = get_parameter(sim_options, 'seed_val')
    if seed_val is not None:
        np.random.seed(seed_val)

    Ac = get_parameter(sim_options, 'Ac')
    Bc = get_parameter(sim_options, 'Bc')

    Cc = np.array([[1., 0., 0., 0.], [0., 0., 1., 0.]])

    Dc = np.zeros((2, 1))

    [nx, nu] = Bc.shape  # number of states and number or inputs
    ny = np.shape(Cc)[0]

    Ts_slower_loop = get_parameter(sim_options, 'Ts_slower_loop')
    ratio_Ts = int(Ts_slower_loop // Ts_PID)

    # Brutal forward euler discretization
    Ad = np.eye(nx) + Ac * Ts_slower_loop
    Bd = Bc * Ts_slower_loop
    Cd = Cc
    Dd = Dc

    # Standard deviation of the measurement noise on position and angle

    std_npos = get_parameter(sim_options, 'std_npos')
    std_nphi = get_parameter(sim_options, 'std_nphi')

    # Force disturbance
    std_dF = get_parameter(sim_options, 'std_dF')

    # Disturbance power spectrum
    w_F = get_parameter(sim_options,
                        'w_F')  # bandwidth of the force disturbance
    tau_F = 1 / w_F
    Hu = control.TransferFunction([1], [1 / w_F, 1])
    Hu = Hu * Hu * Hu
    Hud = control.matlab.c2d(Hu, Ts_PID)
    N_sim_imp = tau_F / Ts_PID * 20
    t_imp = np.arange(N_sim_imp) * Ts_PID
    t, y = control.impulse_response(Hud, t_imp)
    y = y[0]
    std_tmp = np.sqrt(np.sum(y**2))  # np.sqrt(trapz(y**2,t))
    Hu = Hu / (std_tmp) * std_dF

    N_skip = 1  #int(20 * tau_F // Ts_PID) # skip initial samples to get a regime sample of d
    t_sim_d = get_parameter(sim_options, 'len_sim')  # simulation length (s)
    N_sim_d = int(t_sim_d // Ts_PID)
    N_sim_d = N_sim_d + N_skip + 1
    e = np.random.randn(N_sim_d)
    te = np.arange(N_sim_d) * Ts_PID
    _, d, _ = control.forced_response(Hu, te, e)
    d = d.ravel()
    pos_ref = d[N_skip:]

    # Initialize simulation system
    t0 = 0
    phi0 = np.pi  #0.0*2*np.pi/360
    x0 = np.array([0, 0, phi0, 0])  # initial state
    #    system_dyn = ode(f_ODE_wrapped).set_integrator('vode', method='bdf') #    dopri5
    system_dyn = ode(f_ODE_wrapped).set_integrator('dopri5')
    system_dyn.set_initial_value(x0, t0)
    system_dyn.set_f_params(0.0)

    # Default controller parameters -
    P = 30.0  #-100.0
    #I = -1
    #D = -10
    #N = 100.0

    kP = control.tf(P, 1, Ts_PID)
    #kI = I * Ts_PID * control.tf([0, 1], [1, -1], Ts_PID)
    #kD = D*control.tf([N, -N], [1.0, Ts_PID * N - 1], Ts_PID)
    PID_tf = kP  #+ kD + kI
    PID_ss = control.ss(PID_tf)
    k_PID = LinearStateSpaceSystem(A=PID_ss.A,
                                   B=PID_ss.B,
                                   C=PID_ss.C,
                                   D=PID_ss.D)

    # Simulate in closed loop
    len_sim = get_parameter(sim_options, 'len_sim')  # simulation length (s)
    nsim = int(
        len_sim // Ts_slower_loop
    )  #int(np.ceil(len_sim / Ts_slower_loop))  # simulation length(timesteps) # watch out! +1 added, is it correct?
    t_vec = np.zeros((nsim, 1))
    t_calc_vec = np.zeros(
        (nsim, 1))  # computational time to get MPC solution (+ estimator)
    status_vec = np.zeros((nsim, 1))
    x_vec = np.zeros((nsim, nx))
    x_ref_vec = np.zeros((nsim, nx))
    y_vec = np.zeros((nsim, ny))
    y_meas_vec = np.zeros((nsim, ny))
    u_vec = np.zeros((nsim, nu))

    nsim_fast = int(len_sim // Ts_PID)
    t_vec_fast = np.zeros((nsim_fast, 1))
    x_vec_fast = np.zeros(
        (nsim_fast, nx))  # finer integration grid for performance evaluation
    ref_angle_vec_fast = np.zeros((nsim_fast, 1))
    y_meas_vec_fast = np.zeros((nsim_fast, ny))
    x_ref_vec_fast = np.zeros(
        (nsim_fast, nx))  # finer integration grid for performance evaluatio
    u_vec_fast = np.zeros(
        (nsim_fast, nu))  # finer integration grid for performance evaluatio
    Fd_vec_fast = np.zeros((nsim_fast, nu))  #
    t_int_vec_fast = np.zeros((nsim_fast, 1))
    emergency_vec_fast = np.zeros((nsim_fast, 1))  #

    t_step = t0
    x_step = x0
    u_PID = None
    for idx_fast in range(nsim_fast):

        ## Determine step type: fast simulation only or MPC step
        idx_inner_controller = idx_fast // ratio_Ts
        run_inner_controller = (idx_fast % ratio_Ts) == 0

        y_step = Cd.dot(x_step)  # y[i] from the system
        ymeas_step = np.copy(y_step)
        ymeas_step[0] += std_npos * np.random.randn()
        ymeas_step[1] += std_nphi * np.random.randn()
        y_meas_vec_fast[idx_fast, :] = ymeas_step
        # Output for step i
        # Ts_slower_loop outputs

        if run_inner_controller:  # it is also a step of the simulation at rate Ts_slower_loop
            if idx_inner_controller < nsim:
                t_vec[idx_inner_controller, :] = t_step
                y_vec[idx_inner_controller, :] = y_step
                y_meas_vec[idx_inner_controller, :] = ymeas_step
                u_vec[idx_inner_controller, :] = u_PID

        # PID angle CONTROLLER
        ref_pos = pos_ref[idx_fast]
        error_angle = ref_pos - ymeas_step[0]
        u_PID = k_PID.output(error_angle)
        u_PID[u_PID > 10.0] = 10.0
        u_PID[u_PID < -10.0] = -10.0
        u_TOT = u_PID

        # Ts_fast outputs
        t_vec_fast[idx_fast, :] = t_step
        x_vec_fast[idx_fast, :] = x_step  #system_dyn.y
        u_vec_fast[idx_fast, :] = u_TOT
        Fd_vec_fast[idx_fast, :] = 0.0
        ref_angle_vec_fast[idx_fast, :] = ref_pos

        ## Update to step i+1
        k_PID.update(error_angle)

        # Controller simulation step at rate Ts_slower_loop
        if run_inner_controller:
            pass

        # System simulation step at rate Ts_fast
        time_integrate_start = time.perf_counter()
        system_dyn.set_f_params(u_TOT)
        system_dyn.integrate(t_step + Ts_PID)
        x_step = system_dyn.y
        #x_step = x_step + f_ODE_jit(t_step, x_step, u_TOT)*Ts_fast
        #x_step = x_step + f_ODE(0.0, x_step, u_TOT) * Ts_fast
        t_int_vec_fast[
            idx_fast, :] = time.perf_counter() - time_integrate_start

        # Time update
        t_step += Ts_PID

    simout = {
        't': t_vec,
        'x': x_vec,
        'u': u_vec,
        'y': y_vec,
        'y_meas': y_meas_vec,
        'x_ref': x_ref_vec,
        'status': status_vec,
        'Fd_fast': Fd_vec_fast,
        't_fast': t_vec_fast,
        'x_fast': x_vec_fast,
        'x_ref_fast': x_ref_vec_fast,
        'u_fast': u_vec_fast,
        'y_meas_fast': y_meas_vec_fast,
        'emergency_fast': emergency_vec_fast,
        'K': k_PID,
        'nsim': nsim,
        'Ts_slower_loop': Ts_slower_loop,
        't_calc': t_calc_vec,
        'ref_angle_fast': ref_angle_vec_fast,
        't_int_fast': t_int_vec_fast
    }

    return simout
예제 #30
0
g_poles = co.pole(acbaef)
print("G poles")
for elem in g_poles:
    print(f'{elem: .2f}')

g_zeros = co.zero(acbaef)
print("G zeros")
for elem in g_zeros:
    print(f'{elem: .2f}')

g1_map = co.pzmap(acbaef, plot=True)

t = np.linspace(0, 25, 100)
t1, stp = co.step_response(acbaef, t)
t2, imp = co.impulse_response(acbaef, t)  # Warning for infinite impulse at t=0

plt.figure(2)
plt.plot(t1, stp)
plt.title("Step Response")
plt.ylabel("Amplitude")
plt.xlabel("Time")
plt.grid()

plt.figure(3)
plt.plot(t2, imp)
plt.title("Impulse Response")
plt.ylabel("Amplitude")
plt.xlabel("Time")
plt.grid()
plt.show()
예제 #31
0
def SLS_synthesis2(atoms, m, b, k, freqs_bnd_yn=[1e-2, 255], mag_bnd_yn=[-10, -10],
                   freqs_bnd_T=[1e-2, 357], mag_bnd_T=[6, 6]):
    """ The new (version 2) SLS synthesis procedure.
    """
    keys = list(atoms.keys())
    key0 = keys[0]
    NT = atoms[key0].NT
    dT = atoms[key0].dT

    # optimization parameters
    theta = cvx.Variable(len(atoms))
    regularization = cvx.norm1(theta)
    constraints = [cvx.sum(theta) == 1]

    # desired impulse response
    Tarr = np.arange(NT) * dT
    desired_model = co.c2d(co.tf([1], [m, b, k]), dT)
    _, H_desired = co.impulse_response(desired_model, Tarr, transpose=True)
    H_desired = np.array(H_desired).flatten()

    # affine controller's properties
    H_affcomb = 0
    H_fft_affcomb = 0
    for i, key in enumerate(keys):
        H_affcomb += theta[i] * atoms[key].H[:, 0]
        H_fft_affcomb += theta[i] * atoms[key].H_fft

    # list of frequencies for frequency-domain constraints
    omegas = np.arange(int(NT / 2)) * 2 * np.pi / NT / dT
    omegas[0] = 1e-2

    # frequency-based upper bound for noise attenuation
    wN_inv = np.ones(NT) * 100  # infinity
    wN_inv[:int(NT / 2)] = np.power(
        10, np.interp(np.log10(omegas), np.log10(freqs_bnd_yn), mag_bnd_yn) / 20)

    # frequency-based upper bound on the complementary sensitivity
    # function for robust stability
    wT_inv = np.ones(NT) * 100  # infinity
    wT_inv[:int(NT / 2)] = np.power(
        10, np.interp(np.log10(omegas), np.log10(freqs_bnd_T), mag_bnd_T) / 20)

    # add frequency-based constraints
    constraints.append(cvx.abs(H_fft_affcomb[:, 0]) <= wN_inv)
    constraints.append(cvx.abs(H_fft_affcomb[:, 1]) <= wT_inv)

    # mimic desired system response
    mse = cvx.norm(H_affcomb - H_desired)
    obj = cvx.Minimize(mse + regularization)
    constraints.append(
        H_affcomb >= -1e-4
    )

    # opt problem
    prob = cvx.Problem(obj, constraints)
    prob.solve(verbose=True)

    if prob.status == "optimal":
        report_string = " -- Optimization successful!\n     controller key | weight\n"
        for i, key in enumerate(keys):
            report_string += "    {:10} | {:.3f}\n".format(key, theta[i].value)
        print(report_string)
        # form the affinely combined controller
        atoms_list = [atoms[key] for key in keys]
        res_ctrl = AtomicFIRController.init_as_convex_comb(theta.value, atoms_list)
        return res_ctrl, None
    else:
        print(" -- Optimization fails! Returning None!")
        return None, None