def __init__(self, x, y, name, maxhealth, speed, damage, image, attacktimer, mass, attack_range): self.x = x self.y = y self.name = name self.maxhealth = maxhealth self.speed = speed self.damage = damage self.image = image self.attacktimer = attacktimer self.mass = mass self.uuid = core.Var.uuid_gen core.Var.uuid_gen += 1 self.health = self.maxhealth self.frame = self.image.get_rect() self.size = (self.image.get_width() / 2) ** 2 self.vect = core.p.math.Vector2(core.Gameobj.hero.x - self.x, core.Gameobj.hero.y - self.y) self.vect_long = core.p.math.Vector2(core.Gameobj.hero.x - self.x, core.Gameobj.hero.y - self.y) self.time_attacked = 0 self.attack_bool = False self.kickback = 0 self.collision_with_other = [False, 1, 1] self.kick_direction = [0, 0] self.attack_range = (core.dpp(attack_range) + core.sqrt(self.size) + core.sqrt(core.Gameobj.hero.size)) ** 2
def corrcoef(x, y=None, rowvar=True, bias=False, allow_masked=True): """ The correlation coefficients formed from the array x, where the rows are the observations, and the columns are variables. corrcoef(x,y) where x and y are 1d arrays is the same as corrcoef(transpose([x,y])) Parameters ---------- x : ndarray Input data. If x is a 1D array, returns the variance. If x is a 2D array, returns the covariance matrix. y : {None, ndarray} optional Optional set of variables. rowvar : {False, True} optional If True, then each row is a variable with observations in columns. If False, each column is a variable and the observations are in the rows. bias : {False, True} optional Whether to use a biased (True) or unbiased (False) estimate of the covariance. If True, then the normalization is by N, the number of non-missing observations. Otherwise, the normalization is by (N-1). allow_masked : {True, False} optional If True, masked values are propagated pair-wise: if a value is masked in x, the corresponding value is masked in y. If False, raises an exception. See Also -------- cov """ # Get the data (x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked) # Compute the covariance matrix if not rowvar: fact = np.dot(xnotmask.T, xnotmask) * 1.0 - (1 - bool(bias)) c = (dot(x.T, x.conj(), strict=False) / fact).squeeze() else: fact = np.dot(xnotmask, xnotmask.T) * 1.0 - (1 - bool(bias)) c = (dot(x, x.T.conj(), strict=False) / fact).squeeze() # Check whether we have a scalar try: diag = ma.diagonal(c) except ValueError: return 1 # if xnotmask.all(): _denom = ma.sqrt(ma.multiply.outer(diag, diag)) else: _denom = diagflat(diag) n = x.shape[1 - rowvar] if rowvar: for i in range(n - 1): for j in range(i + 1, n): _x = mask_cols(vstack((x[i], x[j]))).var(axis=1, ddof=1 - bias) _denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x)) else: for i in range(n - 1): for j in range(i + 1, n): _x = mask_cols(vstack((x[:, i], x[:, j]))).var(axis=1, ddof=1 - bias) _denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x)) return c / _denom
def corrcoef(x, y=None, rowvar=True, bias=False, allow_masked=True): """The correlation coefficients formed from the array x, where the rows are the observations, and the columns are variables. corrcoef(x,y) where x and y are 1d arrays is the same as corrcoef(transpose([x,y])) Parameters ---------- x : ndarray Input data. If x is a 1D array, returns the variance. If x is a 2D array, returns the covariance matrix. y : {None, ndarray} optional Optional set of variables. rowvar : {False, True} optional If True, then each row is a variable with observations in columns. If False, each column is a variable and the observations are in the rows. bias : {False, True} optional Whether to use a biased (True) or unbiased (False) estimate of the covariance. If True, then the normalization is by N, the number of non-missing observations. Otherwise, the normalization is by (N-1). allow_masked : {True, False} optional If True, masked values are propagated pair-wise: if a value is masked in x, the corresponding value is masked in y. If False, raises an exception. See Also -------- cov """ # Get the data (x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked) # Compute the covariance matrix if not rowvar: fact = np.dot(xnotmask.T, xnotmask)*1. - (1 - bool(bias)) c = (dot(x.T, x.conj(), strict=False) / fact).squeeze() else: fact = np.dot(xnotmask, xnotmask.T)*1. - (1 - bool(bias)) c = (dot(x, x.T.conj(), strict=False) / fact).squeeze() # Check whether we have a scalar try: diag = ma.diagonal(c) except ValueError: return 1 # if xnotmask.all(): _denom = ma.sqrt(ma.multiply.outer(diag, diag)) else: _denom = diagflat(diag) n = x.shape[1-rowvar] if rowvar: for i in range(n-1): for j in range(i+1,n): _x = mask_cols(vstack((x[i], x[j]))).var(axis=1, ddof=1-bias) _denom[i,j] = _denom[j,i] = ma.sqrt(ma.multiply.reduce(_x)) else: for i in range(n-1): for j in range(i+1,n): _x = mask_cols(vstack((x[:,i], x[:,j]))).var(axis=1, ddof=1-bias) _denom[i,j] = _denom[j,i] = ma.sqrt(ma.multiply.reduce(_x)) return c/_denom