def test_df_corr(): gdf = randomdata(100, {str(x): float for x in range(50)}) pdf = gdf.to_pandas() got = gdf.corr() expected = pdf.corr() assert_eq(got, expected)
def test_df_corr(): from cudf.tests import utils gdf = randomdata(100, {str(x): float for x in range(50)}) pdf = gdf.to_pandas() got = gdf.corr() expected = pdf.corr() utils.assert_eq(got, expected)
@pytest.mark.parametrize( "data", [ Series(np.random.normal(-100, 100, 1000)), Series(np.random.randint(-50, 50, 1000)), Series(np.zeros(100)), Series(np.repeat(np.nan, 100)), Series(np.array([1.123, 2.343, np.nan, 0.0])), Series( [5, 10, 53, None, np.nan, None, 12, 43, -423], nan_as_null=False ), Series([1.1032, 2.32, 43.4, 13, -312.0], index=[0, 4, 3, 19, 6]), Series([]), Series([-3]), randomdata( nrows=1000, dtypes={"a": float, "b": int, "c": float, "d": str} ), ], ) @pytest.mark.parametrize("null_flag", [False, True]) def test_kurtosis(data, null_flag): pdata = data.to_pandas() if null_flag and len(data) > 2: data.iloc[[0, 2]] = None pdata.iloc[[0, 2]] = None got = data.kurtosis() got = got if np.isscalar(got) else got.to_array() expected = pdata.kurtosis() np.testing.assert_array_almost_equal(got, expected)