Пример #1
0
def test_df_corr():

    gdf = randomdata(100, {str(x): float for x in range(50)})
    pdf = gdf.to_pandas()
    got = gdf.corr()
    expected = pdf.corr()
    assert_eq(got, expected)
Пример #2
0
def test_df_corr():
    from cudf.tests import utils

    gdf = randomdata(100, {str(x): float for x in range(50)})
    pdf = gdf.to_pandas()
    got = gdf.corr()
    expected = pdf.corr()
    utils.assert_eq(got, expected)
Пример #3
0
@pytest.mark.parametrize(
    "data",
    [
        Series(np.random.normal(-100, 100, 1000)),
        Series(np.random.randint(-50, 50, 1000)),
        Series(np.zeros(100)),
        Series(np.repeat(np.nan, 100)),
        Series(np.array([1.123, 2.343, np.nan, 0.0])),
        Series(
            [5, 10, 53, None, np.nan, None, 12, 43, -423], nan_as_null=False
        ),
        Series([1.1032, 2.32, 43.4, 13, -312.0], index=[0, 4, 3, 19, 6]),
        Series([]),
        Series([-3]),
        randomdata(
            nrows=1000, dtypes={"a": float, "b": int, "c": float, "d": str}
        ),
    ],
)
@pytest.mark.parametrize("null_flag", [False, True])
def test_kurtosis(data, null_flag):
    pdata = data.to_pandas()

    if null_flag and len(data) > 2:
        data.iloc[[0, 2]] = None
        pdata.iloc[[0, 2]] = None

    got = data.kurtosis()
    got = got if np.isscalar(got) else got.to_array()
    expected = pdata.kurtosis()
    np.testing.assert_array_almost_equal(got, expected)