예제 #1
0
    def __init__(self,
                 prefix,
                 topo_loader: TopologyLoader,
                 device,
                 is_train=True,
                 fk=None):
        super(MultiGarmentDataset, self).__init__(device)
        self.prefix = prefix
        self.smpl_hires = SMPL_Layer(highRes=True).to(device)
        self.smpl = SMPL_Layer().to(device)
        self.parents = self.smpl.kintree_parents
        self.faces_hires = self.smpl_hires.th_faces
        self.faces = self.smpl.th_faces
        self.bone_num = len(self.parents)
        lst = [
            f for f in os.listdir(prefix) if os.path.isdir(pjoin(prefix, f))
        ]
        lst.sort()

        lst = lst[:80] if is_train else lst[80:]

        self.t_pose_list = []
        self.offset_list = []
        self.weight_hires = self.smpl_hires.th_weights.to(device)
        self.weight = self.smpl.th_weights.to(device)

        self.cloth_all = np.load(pjoin(prefix, 'all_cloths.npy'))
        self.cloth_all = torch.tensor(self.cloth_all, device=device)

        for name in lst:
            prefix2 = pjoin(prefix, name)
            t_pose = np.load(pjoin(prefix2, 't-pose.npy'))
            offset = np.load(pjoin(prefix2, 'offset.npy'))
            t_pose = torch.tensor(t_pose, device=device)
            offset = torch.tensor(offset, device=device)
            self.t_pose_list.append(t_pose.unsqueeze(0))
            self.offset_list.append(offset.unsqueeze(0))

        high2o_mask = np.array(
            [True] * self.smpl.num_verts + [False] *
            (self.smpl_hires.num_verts - self.smpl.num_verts))
        self.topo_id_hires = topo_loader.load_from_obj(
            pjoin(prefix, 'high_res.obj'))
        self.topo_id = topo_loader.load_from_obj(pjoin(prefix, 'original.obj'))
        self.t_pose_list = torch.cat(self.t_pose_list, dim=0)
        self.offset_list = torch.cat(self.offset_list, dim=0)

        if fk is None:
            fk = ForwardKinematics(self.parents)
        self.fk = fk
예제 #2
0
def main():
    parser = get_parser()
    args = parser.parse_args()
    device = torch.device(args.device)

    train_parser = TrainingOptionParser()
    model_args = train_parser.load(pjoin(args.model_path, 'args.txt'))
    model_args.normalize = args.normalize

    test_pose, test_loc = load_test_anim(args.pose_file, device)

    topo_loader = TopologyLoader(device=device, debug=False)
    mesh = prepare_obj(args.obj_path, topo_loader)

    env_model, res_model = load_model(device, model_args, topo_loader,
                                      args.model_path, args.envelope_only)

    t_pose, topo_id = mesh[0]
    skinning_weight, skeleton, vs, basis, coff = run_single_mesh(
        t_pose, topo_id, test_pose, env_model, res_model)

    faces = topo_loader.faces[topo_id]

    if not args.animated_bvh:
        test_pose = None
    if not args.obj_output:
        vs = None

    write_back(args.result_path, skeleton, skinning_weight, vs, faces,
               args.obj_path, test_pose, basis, coff)
예제 #3
0
def prepare_dataset(device, args):
    topo_loader = TopologyLoader(device=device, debug=args.debug)

    # Prepare SMPL dataset and MultiGarmentDataset
    dataset_smpl = SMPLDataset(device=device)
    dataset_garment = MultiGarmentDataset('./dataset/Meshes/MultiGarment',
                                          topo_loader, device)

    # Prepare topology augmentation
    if args.topo_augment:
        begin_aug_topo, len_topo = topo_loader.load_smpl_group(
            './dataset/Meshes/SMPL/topology/', is_train=True)
    else:
        begin_aug_topo = topo_loader.load_from_obj(
            './dataset/eval_constant/meshes/smpl_std.obj')
        len_topo = 1

    return topo_loader, dataset_smpl, dataset_garment, begin_aug_topo, len_topo
예제 #4
0
 def __init__(self, filenames, topo_loader: TopologyLoader, weight_gt=None):
     self.t_poses = []
     self.topo_id = []
     self.faces = []
     for filename in filenames:
         self.topo_id.append(topo_loader.load_from_obj(filename))
         self.t_poses.append(topo_loader.t_poses[-1])
         self.faces.append(topo_loader.faces[-1])
     if weight_gt is None:
         weight_gt = torch.tensor([
             0.,
         ])
     self.weight = weight_gt
예제 #5
0
def main():
    parser = get_parser()
    args = parser.parse_args()
    device = torch.device(args.device)

    smpl = SMPL_Layer().to(device)

    train_parser = TrainingOptionParser()
    model_args = train_parser.load(pjoin(args.model_path, 'args.txt'))

    test_pose, test_loc = load_test_anim(args.pose_file, device)
    test_shape = torch.tensor(np.load('./eval_constant/test_shape.npy'),
                              device=device)

    topo_loader = TopologyLoader(device=device, debug=False)
    smpl_topo_begin, len_topo_smpl = topo_loader.load_smpl_group(
        './dataset/Meshes/SMPL/topology/', is_train=False)

    env_model, res_model = load_model(device,
                                      model_args,
                                      topo_loader,
                                      args.model_path,
                                      envelope_only=False)

    res_weight = []
    res_skeleton = []
    res_verts = []
    res_verts_lbs = []

    gt_skeleton = smpl.get_offset(test_shape)
    gt_verts = []

    print('Evaluating model...')
    for i in tqdm(range(test_shape.shape[0])):
        pose_ph = torch.zeros((1, 72), device=device)
        t_pose = smpl.forward(pose_ph, test_shape[[i]])[0][0]
        # t_pose = t_pose[topo_loader.v_masks[i]]
        gt_vs = smpl.forward(test_pose,
                             test_shape[[i]].expand(test_pose.shape[0], -1))[0]
        gt_vs = gt_vs[:, topo_loader.v_masks[i]]
        gt_verts.append(gt_vs)

        weight, skeleton, vs, vs_lbs, _, _ = run_single_mesh(t_pose,
                                                             smpl_topo_begin +
                                                             i,
                                                             test_pose,
                                                             env_model,
                                                             res_model,
                                                             requires_lbs=True)
        res_weight.append(weight)
        res_skeleton.append(skeleton)
        res_verts.append(vs)
        res_verts_lbs.append(vs_lbs)

    err_weight = []
    err_avg_verts = []
    err_max_verts = []
    err_lbs_verts = []
    err_j2j = []
    err_j2b = []
    err_b2b = []

    print('Aggregating error...')
    for i in tqdm(range(test_shape.shape[0])):
        mask = topo_loader.v_masks[i]
        weight_gt = smpl.weights[mask]
        err_weight.append(chamfer_weight(res_weight[i], weight_gt))

        err_vert = vert_distance(res_verts[i], gt_verts[i])
        err_lbs = vert_distance(res_verts_lbs[i], gt_verts[i])
        err_avg_verts.append(err_vert[0])
        err_max_verts.append(err_vert[1])
        err_lbs_verts.append(err_lbs[0])

        err_j2j.append(
            chamfer_j2j(res_skeleton[i], gt_skeleton[i], parent_smpl))
        err_j2b.append(
            chamfer_j2b(res_skeleton[i], gt_skeleton[i], parent_smpl))
        err_b2b.append(
            chamfer_b2b(res_skeleton[i], gt_skeleton[i], parent_smpl))

    err_weight = np.array(err_weight).mean()
    err_avg_verts = np.array(err_avg_verts).mean()
    err_max_verts = np.array(err_max_verts).mean()
    err_lbs_verts = np.array(err_lbs_verts).mean()
    err_j2j = np.array(err_j2j).mean()
    err_j2b = np.array(err_j2b).mean()
    err_b2b = np.array(err_b2b).mean()
    print('Skinning Weight L1 = %.7f' % err_weight)
    print('Vertex Mean Loss L2 = %.7f' % err_avg_verts)
    print('Vertex Max Loss L2 = %.7f' % err_max_verts)
    print('Envelope Mean Loss L2 = %.7f' % err_lbs_verts)
    print('CD-J2J = %.7f' % err_j2j)
    print('CD-J2B = %.7f' % err_j2b)
    print('CD-B2B = %.7f' % err_b2b)