예제 #1
0
    def __init__(self,
                 prefix,
                 topo_loader: TopologyLoader,
                 device,
                 is_train=True,
                 fk=None):
        super(MultiGarmentDataset, self).__init__(device)
        self.prefix = prefix
        self.smpl_hires = SMPL_Layer(highRes=True).to(device)
        self.smpl = SMPL_Layer().to(device)
        self.parents = self.smpl.kintree_parents
        self.faces_hires = self.smpl_hires.th_faces
        self.faces = self.smpl.th_faces
        self.bone_num = len(self.parents)
        lst = [
            f for f in os.listdir(prefix) if os.path.isdir(pjoin(prefix, f))
        ]
        lst.sort()

        lst = lst[:80] if is_train else lst[80:]

        self.t_pose_list = []
        self.offset_list = []
        self.weight_hires = self.smpl_hires.th_weights.to(device)
        self.weight = self.smpl.th_weights.to(device)

        self.cloth_all = np.load(pjoin(prefix, 'all_cloths.npy'))
        self.cloth_all = torch.tensor(self.cloth_all, device=device)

        for name in lst:
            prefix2 = pjoin(prefix, name)
            t_pose = np.load(pjoin(prefix2, 't-pose.npy'))
            offset = np.load(pjoin(prefix2, 'offset.npy'))
            t_pose = torch.tensor(t_pose, device=device)
            offset = torch.tensor(offset, device=device)
            self.t_pose_list.append(t_pose.unsqueeze(0))
            self.offset_list.append(offset.unsqueeze(0))

        high2o_mask = np.array(
            [True] * self.smpl.num_verts + [False] *
            (self.smpl_hires.num_verts - self.smpl.num_verts))
        self.topo_id_hires = topo_loader.load_from_obj(
            pjoin(prefix, 'high_res.obj'))
        self.topo_id = topo_loader.load_from_obj(pjoin(prefix, 'original.obj'))
        self.t_pose_list = torch.cat(self.t_pose_list, dim=0)
        self.offset_list = torch.cat(self.offset_list, dim=0)

        if fk is None:
            fk = ForwardKinematics(self.parents)
        self.fk = fk
예제 #2
0
 def __init__(self, filenames, topo_loader: TopologyLoader, weight_gt=None):
     self.t_poses = []
     self.topo_id = []
     self.faces = []
     for filename in filenames:
         self.topo_id.append(topo_loader.load_from_obj(filename))
         self.t_poses.append(topo_loader.t_poses[-1])
         self.faces.append(topo_loader.faces[-1])
     if weight_gt is None:
         weight_gt = torch.tensor([
             0.,
         ])
     self.weight = weight_gt
예제 #3
0
def prepare_dataset(device, args):
    topo_loader = TopologyLoader(device=device, debug=args.debug)

    # Prepare SMPL dataset and MultiGarmentDataset
    dataset_smpl = SMPLDataset(device=device)
    dataset_garment = MultiGarmentDataset('./dataset/Meshes/MultiGarment',
                                          topo_loader, device)

    # Prepare topology augmentation
    if args.topo_augment:
        begin_aug_topo, len_topo = topo_loader.load_smpl_group(
            './dataset/Meshes/SMPL/topology/', is_train=True)
    else:
        begin_aug_topo = topo_loader.load_from_obj(
            './dataset/eval_constant/meshes/smpl_std.obj')
        len_topo = 1

    return topo_loader, dataset_smpl, dataset_garment, begin_aug_topo, len_topo