alov = AlovDataset(os.path.join(alov_root_dir, 'ALOV_images/'), os.path.join(alov_root_dir, 'ALOV_ann/'), os.path.join(alov_root_dir, 'ALOV_results/'), device) from deeplkt.config import * params = dotdict({ 'mode' : MODE, 'max_iterations' : MAX_LK_ITERATIONS, 'epsilon' : EPSILON, 'num_classes': NUM_CLASSES, 'num_channels': 3, 'info': "LearnedLKTALOV" }) # lr = 0.0005 # momentum = 0.5 net = PureLKTNet(device, params) tracker = LKTTracker(net) train_params = dotdict({ 'batch_size' : BATCH_SIZE, 'val_split' : VALIDATION_SPLIT, 'train_examples':TRAIN_EXAMPLES, 'shuffle_train': SHUFFLE_TRAIN,
# 'ALOV_images/'), # os.path.join(alov_root_dir, # 'ALOV_ann/'), # os.path.join(alov_root_dir, # 'ALOV_results/'), # device) # train_loader = DataLoader(alov, batch_size=1, shuffle=False) params = dotdict({ 'mode' : MODE, 'max_iterations' : MAX_LK_ITERATIONS, 'epsilon' : EPSILON, 'info': "Pure LKT" }) # lr = 0.0005 # momentum = 0.5 nn = PureLKTNet(device, params) tracker = LKTTracker(nn) video_name = "../red_square.mp4" dir_name = "../red_square" outdir_name = "../red_square_results" window_name = "ABC" make_dir(dir_name)