Пример #1
0
alov = AlovDataset(os.path.join(alov_root_dir,
                       'ALOV_images/'),
                   os.path.join(alov_root_dir,
                       'ALOV_ann/'),
                   os.path.join(alov_root_dir,
                       'ALOV_results/'), 
                       device)


from deeplkt.config import *
params = dotdict({
    'mode' : MODE,
    'max_iterations' : MAX_LK_ITERATIONS,
    'epsilon' : EPSILON,
    'num_classes': NUM_CLASSES,
    'num_channels': 3,
    'info': "LearnedLKTALOV"

})
# lr = 0.0005
# momentum = 0.5


net = PureLKTNet(device, params)
tracker = LKTTracker(net)
train_params = dotdict({
    'batch_size' : BATCH_SIZE,
    'val_split' : VALIDATION_SPLIT,
    'train_examples':TRAIN_EXAMPLES,
    'shuffle_train': SHUFFLE_TRAIN,
Пример #2
0
#                        'ALOV_images/'),
#                    os.path.join(alov_root_dir,
#                        'ALOV_ann/'),
#                    os.path.join(alov_root_dir,
#                        'ALOV_results/'), 
#                        device)


# train_loader = DataLoader(alov, batch_size=1, shuffle=False)




params = dotdict({
    'mode' : MODE,
    'max_iterations' : MAX_LK_ITERATIONS,
    'epsilon' : EPSILON,
    'info': "Pure LKT"
})
# lr = 0.0005
# momentum = 0.5


nn = PureLKTNet(device, params)
tracker = LKTTracker(nn)

video_name = "../red_square.mp4"
dir_name = "../red_square"
outdir_name = "../red_square_results"

window_name = "ABC"
make_dir(dir_name)