def test_crystal_model(): real_space_a = matrix.col((10, 0, 0)) real_space_b = matrix.col((0, 11, 0)) real_space_c = matrix.col((0, 0, 12)) model = Crystal( real_space_a=(10, 0, 0), real_space_b=(0, 11, 0), real_space_c=(0, 0, 12), space_group_symbol="P 1", ) # This doesn't work as python class uctbx.unit_cell(uctbx_ext.unit_cell) # so C++ and python classes are different types # assert isinstance(model.get_unit_cell(), uctbx.unit_cell) assert model.get_unit_cell().parameters() == (10.0, 11.0, 12.0, 90.0, 90.0, 90.0) assert approx_equal(model.get_A(), (1 / 10, 0, 0, 0, 1 / 11, 0, 0, 0, 1 / 12)) assert approx_equal( matrix.sqr(model.get_A()).inverse(), (10, 0, 0, 0, 11, 0, 0, 0, 12)) assert approx_equal(model.get_B(), model.get_A()) assert approx_equal(model.get_U(), (1, 0, 0, 0, 1, 0, 0, 0, 1)) assert approx_equal(model.get_real_space_vectors(), (real_space_a, real_space_b, real_space_c)) assert (model.get_crystal_symmetry().unit_cell().parameters() == model.get_unit_cell().parameters()) assert model.get_crystal_symmetry().space_group() == model.get_space_group( ) model2 = Crystal( real_space_a=(10, 0, 0), real_space_b=(0, 11, 0), real_space_c=(0, 0, 12), space_group_symbol="P 1", ) assert model == model2 model2a = Crystal(model.get_A(), model.get_space_group()) assert model == model2a model2b = Crystal( matrix.sqr(model.get_A()).inverse().elems, model.get_space_group().type().lookup_symbol(), reciprocal=False, ) assert model == model2b # rotate 45 degrees about x-axis R1 = matrix.sqr(( 1, 0, 0, 0, math.cos(math.pi / 4), -math.sin(math.pi / 4), 0, math.sin(math.pi / 4), math.cos(math.pi / 4), )) # rotate 30 degrees about y-axis R2 = matrix.sqr(( math.cos(math.pi / 6), 0, math.sin(math.pi / 6), 0, 1, 0, -math.sin(math.pi / 6), 0, math.cos(math.pi / 6), )) # rotate 60 degrees about z-axis R3 = matrix.sqr(( math.cos(math.pi / 3), -math.sin(math.pi / 3), 0, math.sin(math.pi / 3), math.cos(math.pi / 3), 0, 0, 0, 1, )) R = R1 * R2 * R3 model.set_U(R) # B is unchanged assert approx_equal(model.get_B(), (1 / 10, 0, 0, 0, 1 / 11, 0, 0, 0, 1 / 12)) assert approx_equal(model.get_U(), R) assert approx_equal(model.get_A(), matrix.sqr(model.get_U()) * matrix.sqr(model.get_B())) a_, b_, c_ = model.get_real_space_vectors() assert approx_equal(a_, R * real_space_a) assert approx_equal(b_, R * real_space_b) assert approx_equal(c_, R * real_space_c) assert (str(model).replace("-0.0000", " 0.0000") == """\ Crystal: Unit cell: (10.000, 11.000, 12.000, 90.000, 90.000, 90.000) Space group: P 1 U matrix: {{ 0.4330, -0.7500, 0.5000}, { 0.7891, 0.0474, -0.6124}, { 0.4356, 0.6597, 0.6124}} B matrix: {{ 0.1000, 0.0000, 0.0000}, { 0.0000, 0.0909, 0.0000}, { 0.0000, 0.0000, 0.0833}} A = UB: {{ 0.0433, -0.0682, 0.0417}, { 0.0789, 0.0043, -0.0510}, { 0.0436, 0.0600, 0.0510}} """) model.set_B((1 / 12, 0, 0, 0, 1 / 12, 0, 0, 0, 1 / 12)) assert approx_equal(model.get_unit_cell().parameters(), (12, 12, 12, 90, 90, 90)) U = matrix.sqr((0.3455, -0.2589, -0.9020, 0.8914, 0.3909, 0.2293, 0.2933, -0.8833, 0.3658)) B = matrix.sqr((1 / 13, 0, 0, 0, 1 / 13, 0, 0, 0, 1 / 13)) model.set_A(U * B) assert approx_equal(model.get_A(), U * B) assert approx_equal(model.get_U(), U, 1e-4) assert approx_equal(model.get_B(), B, 1e-5) model3 = Crystal( real_space_a=(10, 0, 0), real_space_b=(0, 11, 0), real_space_c=(0, 0, 12), space_group=sgtbx.space_group_info("P 222").group(), ) assert model3.get_space_group().type().hall_symbol() == " P 2 2" assert model != model3 # sgi_ref = sgtbx.space_group_info(number=230) model_ref = Crystal( real_space_a=(44, 0, 0), real_space_b=(0, 44, 0), real_space_c=(0, 0, 44), space_group=sgi_ref.group(), ) assert approx_equal(model_ref.get_U(), (1, 0, 0, 0, 1, 0, 0, 0, 1)) assert approx_equal(model_ref.get_B(), (1 / 44, 0, 0, 0, 1 / 44, 0, 0, 0, 1 / 44)) assert approx_equal(model_ref.get_A(), model_ref.get_B()) assert approx_equal(model_ref.get_unit_cell().parameters(), (44, 44, 44, 90, 90, 90)) a_ref, b_ref, c_ref = map(matrix.col, model_ref.get_real_space_vectors()) cb_op_to_primitive = sgi_ref.change_of_basis_op_to_primitive_setting() model_primitive = model_ref.change_basis(cb_op_to_primitive) cb_op_to_reference = (model_primitive.get_space_group().info(). change_of_basis_op_to_reference_setting()) a_prim, b_prim, c_prim = map(matrix.col, model_primitive.get_real_space_vectors()) assert (cb_op_to_primitive.as_abc() == "-1/2*a+1/2*b+1/2*c,1/2*a-1/2*b+1/2*c,1/2*a+1/2*b-1/2*c") assert approx_equal(a_prim, -1 / 2 * a_ref + 1 / 2 * b_ref + 1 / 2 * c_ref) assert approx_equal(b_prim, 1 / 2 * a_ref - 1 / 2 * b_ref + 1 / 2 * c_ref) assert approx_equal(c_prim, 1 / 2 * a_ref + 1 / 2 * b_ref - 1 / 2 * c_ref) assert cb_op_to_reference.as_abc() == "b+c,a+c,a+b" assert approx_equal(a_ref, b_prim + c_prim) assert approx_equal(b_ref, a_prim + c_prim) assert approx_equal(c_ref, a_prim + b_prim) assert approx_equal( model_primitive.get_U(), [ -0.5773502691896258, 0.40824829046386285, 0.7071067811865476, 0.5773502691896257, -0.4082482904638631, 0.7071067811865476, 0.5773502691896257, 0.8164965809277259, 0.0, ], ) assert approx_equal( model_primitive.get_B(), [ 0.0262431940540739, 0.0, 0.0, 0.00927837023781507, 0.02783511071344521, 0.0, 0.01607060866333063, 0.01607060866333063, 0.03214121732666125, ], ) assert approx_equal( model_primitive.get_A(), (0, 1 / 44, 1 / 44, 1 / 44, 0, 1 / 44, 1 / 44, 1 / 44, 0), ) assert approx_equal( model_primitive.get_unit_cell().parameters(), [ 38.1051177665153, 38.1051177665153, 38.1051177665153, 109.47122063449069, 109.47122063449069, 109.47122063449069, ], ) assert model_ref != model_primitive model_ref_recycled = model_primitive.change_basis(cb_op_to_reference) assert approx_equal(model_ref.get_U(), model_ref_recycled.get_U()) assert approx_equal(model_ref.get_B(), model_ref_recycled.get_B()) assert approx_equal(model_ref.get_A(), model_ref_recycled.get_A()) assert approx_equal( model_ref.get_unit_cell().parameters(), model_ref_recycled.get_unit_cell().parameters(), ) assert model_ref == model_ref_recycled uc = uctbx.unit_cell( (58.2567, 58.1264, 39.7093, 46.9077, 46.8612, 62.1055)) sg = sgtbx.space_group_info(symbol="P1").group() cs = crystal.symmetry(unit_cell=uc, space_group=sg) cb_op_to_minimum = cs.change_of_basis_op_to_minimum_cell() # the reciprocal matrix B = matrix.sqr(uc.fractionalization_matrix()).transpose() U = random_rotation() direct_matrix = (U * B).inverse() model = Crystal(direct_matrix[:3], direct_matrix[3:6], direct_matrix[6:9], space_group=sg) assert uc.is_similar_to(model.get_unit_cell()) uc_minimum = uc.change_basis(cb_op_to_minimum) model_minimum = model.change_basis(cb_op_to_minimum) assert uc_minimum.is_similar_to(model_minimum.get_unit_cell()) assert model_minimum != model model_minimum.update(model) assert model_minimum == model # lgtm A_static = matrix.sqr(model.get_A()) A_as_scan_points = [A_static] num_scan_points = 11 for i in range(num_scan_points - 1): A_as_scan_points.append( A_as_scan_points[-1] * matrix.sqr(euler_angles.xyz_matrix(0.1, 0.2, 0.3))) model.set_A_at_scan_points(A_as_scan_points) model_minimum = model.change_basis(cb_op_to_minimum) assert model.num_scan_points == model_minimum.num_scan_points == num_scan_points M = matrix.sqr(cb_op_to_minimum.c_inv().r().transpose().as_double()) M_inv = M.inverse() for i in range(num_scan_points): A_orig = matrix.sqr(model.get_A_at_scan_point(i)) A_min = matrix.sqr(model_minimum.get_A_at_scan_point(i)) assert approx_equal(A_min, A_orig * M_inv) assert model.get_unit_cell().parameters() == pytest.approx( (58.2567, 58.1264, 39.7093, 46.9077, 46.8612, 62.1055)) uc = uctbx.unit_cell((10, 11, 12, 91, 92, 93)) model.set_unit_cell(uc) assert model.get_unit_cell().parameters() == pytest.approx(uc.parameters())
def test_check_old_vs_new(): from dxtbx.tests.model.crystal_model_old import crystal_model_old model_1 = Crystal( real_space_a=(10, 0, 0), real_space_b=(0, 11, 0), real_space_c=(0, 0, 12), space_group_symbol="P 1", ) model_2 = crystal_model_old( real_space_a=(10, 0, 0), real_space_b=(0, 11, 0), real_space_c=(0, 0, 12), space_group_symbol="P 1", ) cov_B = matrix.sqr([1] * (9 * 9)) model_1.set_B_covariance(cov_B) model_2.set_B_covariance(cov_B) A_list = [model_1.get_A() for i in range(20)] model_1.set_A_at_scan_points(A_list) model_2.set_A_at_scan_points(A_list) A1 = model_1.get_A() A2 = model_2.get_A() U1 = model_1.get_U() U2 = model_2.get_U() B1 = model_1.get_B() B2 = model_2.get_B() UC1 = model_1.get_unit_cell() UC2 = model_2.get_unit_cell() RSV1 = model_1.get_real_space_vectors() RSV2 = model_2.get_real_space_vectors() SG1 = model_1.get_space_group() SG2 = model_2.get_space_group() assert model_1.num_scan_points == model_2.num_scan_points A_list_1 = [ model_1.get_A_at_scan_point(i) for i in range(model_1.get_num_scan_points()) ] A_list_2 = [ model_2.get_A_at_scan_point(i) for i in range(model_1.get_num_scan_points()) ] B_list_1 = [ model_1.get_B_at_scan_point(i) for i in range(model_1.get_num_scan_points()) ] B_list_2 = [ model_2.get_B_at_scan_point(i) for i in range(model_1.get_num_scan_points()) ] U_list_1 = [ model_1.get_U_at_scan_point(i) for i in range(model_1.get_num_scan_points()) ] U_list_2 = [ model_2.get_U_at_scan_point(i) for i in range(model_1.get_num_scan_points()) ] assert approx_equal(A1, A2) assert approx_equal(B1, B2) assert approx_equal(U1, U2) assert approx_equal(UC1.parameters(), UC2.parameters()) assert approx_equal(RSV1[0], RSV2[0]) assert approx_equal(RSV1[1], RSV2[1]) assert approx_equal(RSV1[2], RSV2[2]) assert str(SG1.info()) == str(SG2.info()) for i in range(model_1.get_num_scan_points()): assert approx_equal(A_list_1[i], A_list_2[i]) assert approx_equal(B_list_1[i], B_list_2[i]) assert approx_equal(U_list_1[i], U_list_2[i]) cell_sd_1 = model_1.get_cell_parameter_sd() cell_sd_2 = model_2.get_cell_parameter_sd() cell_volume_sd_1 = model_1.get_cell_volume_sd() cell_volume_sd_2 = model_2.get_cell_volume_sd() covB1 = model_1.get_B_covariance() covB2 = model_1.get_B_covariance() assert approx_equal(covB1, covB2) assert approx_equal(cell_volume_sd_1, cell_volume_sd_2) assert approx_equal(cell_sd_1, cell_sd_2)