def test_source_space(): "Test SourceSpace Dimension" subject = 'fsaverage' data_path = mne.datasets.sample.data_path() mri_sdir = os.path.join(data_path, 'subjects') mri_dir = os.path.join(mri_sdir, subject) label_dir = os.path.join(mri_dir, 'label') label_ba1 = mne.read_label(os.path.join(label_dir, 'lh.BA1.label')) label_v1 = mne.read_label(os.path.join(label_dir, 'lh.V1.label')) label_mt = mne.read_label(os.path.join(label_dir, 'lh.MT.label')) label_ba1_v1 = label_ba1 + label_v1 label_v1_mt = label_v1 + label_mt src = datasets._mne_source_space(subject, 'ico-5', mri_sdir) source = SourceSpace.from_mne_source_spaces(src, 'ico-5', mri_sdir) source_v1 = source[source.dimindex(label_v1)] eq_(source_v1, SourceSpace.from_mne_source_spaces(src, 'ico-5', mri_sdir, label=label_v1)) source_ba1_v1 = source[source.dimindex(label_ba1_v1)] source_v1_mt = source[source.dimindex(label_v1_mt)] source_v1_intersection = source_ba1_v1.intersect(source_v1_mt) assert_source_space_equal(source_v1, source_v1_intersection) # index from label index = source.index_for_label(label_v1) assert_array_equal(index.source[index.x].vertno[0], np.intersect1d(source.lh_vertno, label_v1.vertices, 1)) # parcellation and cluster localization parc = mne.read_labels_from_annot(subject, parc='aparc', subjects_dir=mri_sdir) indexes = [source.index_for_label(label) for label in parc if len(label) > 10] x = np.vstack([index.x for index in indexes]) ds = source._cluster_properties(x) for i in range(ds.n_cases): eq_(ds[i, 'location'], parc[i].name) # multiple labels lingual_index = source.dimindex('lingual-lh') cuneus_index = source.dimindex('cuneus-lh') assert_array_equal(source.dimindex(('cuneus-lh', 'lingual-lh')), np.logical_or(cuneus_index, lingual_index)) lingual_source = source[lingual_index] cuneus_source = source[cuneus_index] assert_raises(IndexError, lingual_source.dimindex, cuneus_source) sub_source = source[source.dimindex(('cuneus-lh', 'lingual-lh'))] eq_(sub_source[sub_source.dimindex('lingual-lh')], lingual_source) eq_(sub_source[sub_source.dimindex('cuneus-lh')], cuneus_source) eq_(len(sub_source), len(lingual_source) + len(cuneus_source)) # indexing tgt = np.hstack(sub_source.vertno) assert_array_equal([i for i in sub_source], tgt) assert_array_equal([sub_source[i] for i in range(len(sub_source))], tgt) # hemisphere indexing lh = source.dimindex('lh') source_lh = source[lh] eq_(source_lh.dimindex('rh'), slice(0, 0)) eq_(source_lh.dimindex('lh'), slice(len(source_lh)))
def test_source_space(): "Test SourceSpace Dimension" subject = 'fsaverage' data_path = mne.datasets.sample.data_path() mri_sdir = os.path.join(data_path, 'subjects') mri_dir = os.path.join(mri_sdir, subject) label_dir = os.path.join(mri_dir, 'label') label_ba1 = mne.read_label(os.path.join(label_dir, 'lh.BA1.label')) label_v1 = mne.read_label(os.path.join(label_dir, 'lh.V1.label')) label_mt = mne.read_label(os.path.join(label_dir, 'lh.MT.label')) label_ba1_v1 = label_ba1 + label_v1 label_v1_mt = label_v1 + label_mt src = datasets._mne_source_space(subject, 'ico-5', mri_sdir) source = SourceSpace.from_mne_source_spaces(src, 'ico-5', mri_sdir) source_v1 = source[source.dimindex(label_v1)] eq_(source_v1, SourceSpace.from_mne_source_spaces(src, 'ico-5', mri_sdir, label=label_v1)) source_ba1_v1 = source[source.dimindex(label_ba1_v1)] source_v1_mt = source[source.dimindex(label_v1_mt)] source_v1_intersection = source_ba1_v1.intersect(source_v1_mt) assert_source_space_equal(source_v1, source_v1_intersection) # index from label index = source.index_for_label(label_v1) assert_array_equal(index.source[index.x].vertno[0], np.intersect1d(source.lh_vertno, label_v1.vertices, 1)) # parcellation and cluster localization parc = mne.read_labels_from_annot(subject, parc='aparc', subjects_dir=mri_sdir) indexes = [source.index_for_label(label) for label in parc if len(label) > 10] x = np.vstack([index.x for index in indexes]) ds = source._cluster_properties(x) for i in xrange(ds.n_cases): eq_(ds[i, 'location'], parc[i].name) # multiple labels lingual_index = source.dimindex('lingual-lh') cuneus_index = source.dimindex('cuneus-lh') assert_array_equal(source.dimindex(('cuneus-lh', 'lingual-lh')), np.logical_or(cuneus_index, lingual_index)) lingual_source = source[lingual_index] cuneus_source = source[cuneus_index] assert_raises(IndexError, lingual_source.dimindex, cuneus_source) sub_source = source[source.dimindex(('cuneus-lh', 'lingual-lh'))] eq_(sub_source[sub_source.dimindex('lingual-lh')], lingual_source) eq_(sub_source[sub_source.dimindex('cuneus-lh')], cuneus_source) eq_(len(sub_source), len(lingual_source) + len(cuneus_source)) # indexing tgt = np.hstack(sub_source.vertno) assert_array_equal([i for i in sub_source], tgt) assert_array_equal([sub_source[i] for i in xrange(len(sub_source))], tgt) # hemisphere indexing lh = source.dimindex('lh') source_lh = source[lh] eq_(source_lh.dimindex('rh'), slice(0, 0)) eq_(source_lh.dimindex('lh'), slice(0, len(source_lh)))
def test_source_space(): "Test SourceSpace Dimension" subject = 'fsaverage' data_path = mne.datasets.sample.data_path() mri_sdir = os.path.join(data_path, 'subjects') mri_dir = os.path.join(mri_sdir, subject) src_path = os.path.join(mri_dir, 'bem', subject + '-ico-5-src.fif') label_dir = os.path.join(mri_dir, 'label') label_ba1 = mne.read_label(os.path.join(label_dir, 'lh.BA1.label')) label_v1 = mne.read_label(os.path.join(label_dir, 'lh.V1.label')) label_mt = mne.read_label(os.path.join(label_dir, 'lh.MT.label')) label_ba1_v1 = label_ba1 + label_v1 label_v1_mt = label_v1 + label_mt src = mne.read_source_spaces(src_path) source = SourceSpace((src[0]['vertno'], src[1]['vertno']), subject, 'ico-5', mri_sdir) index = source.dimindex(label_v1) source_v1 = source[index] index = source.dimindex(label_ba1_v1) source_ba1_v1 = source[index] index = source.dimindex(label_v1_mt) source_v1_mt = source[index] index = source_ba1_v1.dimindex(source_v1_mt) source_v1_intersection = source_ba1_v1[index] assert_source_space_equal(source_v1, source_v1_intersection) # index from label index = source.index_for_label(label_v1) assert_array_equal(index.source[index.x].vertno[0], np.intersect1d(source.lh_vertno, label_v1.vertices, 1)) # parcellation and cluster localization parc = mne.read_labels_from_annot(subject, parc='aparc', subjects_dir=mri_sdir) indexes = [source.index_for_label(label) for label in parc if len(label) > 10] x = np.vstack([index.x for index in indexes]) ds = source._cluster_properties(x) for i in xrange(ds.n_cases): eq_(ds[i, 'location'], parc[i].name) # multiple labels lingual_index = source.dimindex('lingual-lh') cuneus_index = source.dimindex('cuneus-lh') assert_array_equal(source.dimindex(('cuneus-lh', 'lingual-lh')), np.logical_or(cuneus_index, lingual_index)) lingual_source = source[lingual_index] cuneus_source = source[cuneus_index] sub_source = source[source.dimindex(('cuneus-lh', 'lingual-lh'))] eq_(sub_source[sub_source.dimindex('lingual-lh')], lingual_source) eq_(sub_source[sub_source.dimindex('cuneus-lh')], cuneus_source) eq_(len(sub_source), len(lingual_source) + len(cuneus_source))
def test_source_space(): "Test SourceSpace Dimension" subject = 'fsaverage' data_path = mne.datasets.sample.data_path() mri_sdir = os.path.join(data_path, 'subjects') mri_dir = os.path.join(mri_sdir, subject) src_path = os.path.join(mri_dir, 'bem', subject + '-ico-5-src.fif') label_dir = os.path.join(mri_dir, 'label') label_ba1 = mne.read_label(os.path.join(label_dir, 'lh.BA1.label')) label_v1 = mne.read_label(os.path.join(label_dir, 'lh.V1.label')) label_mt = mne.read_label(os.path.join(label_dir, 'lh.MT.label')) label_ba1_v1 = label_ba1 + label_v1 label_v1_mt = label_v1 + label_mt src = mne.read_source_spaces(src_path) source = SourceSpace((src[0]['vertno'], src[1]['vertno']), subject, 'ico-5', mri_sdir) index = source.dimindex(label_v1) source_v1 = source[index] index = source.dimindex(label_ba1_v1) source_ba1_v1 = source[index] index = source.dimindex(label_v1_mt) source_v1_mt = source[index] index = source_ba1_v1.dimindex(source_v1_mt) source_v1_intersection = source_ba1_v1[index] assert_source_space_equal(source_v1, source_v1_intersection) # index from label index = source.index_for_label(label_v1) assert_array_equal(index.source[index.x].vertno[0], np.intersect1d(source.lh_vertno, label_v1.vertices, 1)) # parcellation and cluster localization if mne.__version__ < '0.8': return parc = mne.read_labels_from_annot(subject, parc='aparc', subjects_dir=mri_sdir) indexes = [ source.index_for_label(label) for label in parc if len(label) > 10 ] x = np.vstack([index.x for index in indexes]) ds = source._cluster_properties(x) for i in xrange(ds.n_cases): eq_(ds[i, 'location'], parc[i].name)