def compute(audio, pool, options): # analysis parameters sampleRate = options['sampleRate'] frameSize = options['frameSize'] hopSize = options['hopSize'] windowType = options['windowType'] # frame algorithms frames = essentia.FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize) window = essentia.Windowing(size=frameSize, zeroPadding=0, type=windowType) spectrum = essentia.Spectrum(size=frameSize) # spectral algorithms energy = essentia.Energy() mfcc = essentia.MFCC(highFrequencyBound=8000) INFO('Computing Low-Level descriptors necessary for segmentation...') # used for a nice progress display total_frames = frames.num_frames() n_frames = 0 start_of_frame = -frameSize * 0.5 progress = Progress(total=total_frames) for frame in frames: frameScope = [ start_of_frame / sampleRate, (start_of_frame + frameSize) / sampleRate ] #pool.setCurrentScope(frameScope) pool.add(namespace + '.' + 'scope', frameScope) if options['skipSilence'] and essentia.isSilent(frame): total_frames -= 1 start_of_frame += hopSize continue frame_windowed = window(frame) frame_spectrum = spectrum(frame_windowed) # need the energy for getting the thumbnail pool.add(namespace + '.' + 'spectral_energy', energy(frame_spectrum)) # mfcc (frame_melbands, frame_mfcc) = mfcc(frame_spectrum) pool.add(namespace + '.' + 'spectral_mfcc', frame_mfcc) # display of progress report progress.update(n_frames) n_frames += 1 start_of_frame += hopSize progress.finish()
def compute(audio, pool, options): # analysis parameters sampleRate = options['sampleRate'] frameSize = options['frameSize'] hopSize = options['hopSize'] windowType = options['windowType'] # frame algorithms frames = essentia.FrameGenerator(audio = audio, frameSize = frameSize, hopSize = hopSize) window = essentia.Windowing(size = frameSize, zeroPadding = 0, type = windowType) spectrum = essentia.Spectrum(size = frameSize) # spectral algorithms energy = essentia.Energy() mfcc = essentia.MFCC(highFrequencyBound = 8000) INFO('Computing Low-Level descriptors necessary for segmentation...') # used for a nice progress display total_frames = frames.num_frames() n_frames = 0 start_of_frame = -frameSize*0.5 progress = Progress(total = total_frames) for frame in frames: frameScope = [ start_of_frame / sampleRate, (start_of_frame + frameSize) / sampleRate ] #pool.setCurrentScope(frameScope) pool.add(namespace + '.' + 'scope', frameScope) if options['skipSilence'] and essentia.isSilent(frame): total_frames -= 1 start_of_frame += hopSize continue frame_windowed = window(frame) frame_spectrum = spectrum(frame_windowed) # need the energy for getting the thumbnail pool.add(namespace + '.' + 'spectral_energy', energy(frame_spectrum)) # mfcc (frame_melbands, frame_mfcc) = mfcc(frame_spectrum) pool.add(namespace + '.' + 'spectral_mfcc', frame_mfcc) # display of progress report progress.update(n_frames) n_frames += 1 start_of_frame += hopSize progress.finish()
def compute(audio): audio = essentia.array(audio) sampleRate = int(conf.opts['sampleRate']) frameSize = int(conf.opts['frameSize']) hopSize = int(conf.opts['hopSize']) zeroPadding = int(conf.opts['zeroPadding']) windowType = conf.opts['windowType'] frameRate = float(sampleRate) / float(hopSize) INFO('Computing Ess Detection...') frames = FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize) window = Windowing(size=frameSize, zeroPadding=zeroPadding, type=windowType) fft = FFT() cartesian2polar = CartesianToPolar() onsetdetectionHFC = OnsetDetection(method="hfc", sampleRate=sampleRate) onsetdetectionComplex = OnsetDetection(method="complex", sampleRate=sampleRate) total_frames = frames.num_frames() n_frames = 0 start_of_frame = -frameSize * 0.5 hfc = [] complex = [] progress = Progress(total=total_frames) maxhfc = 0 for frame in frames: windowed_frame = window(frame) complex_fft = fft(windowed_frame) (spectrum, phase) = cartesian2polar(complex_fft) hfc.append(onsetdetectionHFC(spectrum, phase)) maxhfc = max(hfc[-1], maxhfc) complex.append(onsetdetectionComplex(spectrum, phase)) # display of progress report progress.update(n_frames) n_frames += 1 start_of_frame += hopSize # The onset rate is defined as the number of onsets per seconds res = [[x / maxhfc for x in hfc]] res += [complex] return np.array(res)
def compute(audio): audio = essentia.array(audio) sampleRate = int(conf.opts["sampleRate"]) frameSize = int(conf.opts["frameSize"]) hopSize = int(conf.opts["hopSize"]) zeroPadding = int(conf.opts["zeroPadding"]) windowType = conf.opts["windowType"] frameRate = float(sampleRate) / float(hopSize) INFO("Computing Ess Detection...") frames = FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize) window = Windowing(size=frameSize, zeroPadding=zeroPadding, type=windowType) fft = FFT() cartesian2polar = CartesianToPolar() onsetdetectionHFC = OnsetDetection(method="hfc", sampleRate=sampleRate) onsetdetectionComplex = OnsetDetection(method="complex", sampleRate=sampleRate) total_frames = frames.num_frames() n_frames = 0 start_of_frame = -frameSize * 0.5 hfc = [] complex = [] progress = Progress(total=total_frames) maxhfc = 0 for frame in frames: windowed_frame = window(frame) complex_fft = fft(windowed_frame) (spectrum, phase) = cartesian2polar(complex_fft) hfc.append(onsetdetectionHFC(spectrum, phase)) maxhfc = max(hfc[-1], maxhfc) complex.append(onsetdetectionComplex(spectrum, phase)) # display of progress report progress.update(n_frames) n_frames += 1 start_of_frame += hopSize # The onset rate is defined as the number of onsets per seconds res = [[x / maxhfc for x in hfc]] res += [complex] return np.array(res)
def compute(audio, pool, options): # analysis parameters sampleRate = options['sampleRate'] frameSize = options['frameSize'] hopSize = options['hopSize'] windowType = options['windowType'] # temporal descriptors lpc = ess.LPC(order=10, type='warped', sampleRate=sampleRate) zerocrossingrate = ess.ZeroCrossingRate() # frame algorithms frames = ess.FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize) window = ess.Windowing(size=frameSize, zeroPadding=0, type=windowType) spectrum = ess.Spectrum(size=frameSize) # spectral algorithms barkbands = ess.BarkBands(sampleRate=sampleRate) centralmoments = ess.CentralMoments() crest = ess.Crest() centroid = ess.Centroid() decrease = ess.Decrease() spectral_contrast = ess.SpectralContrast(frameSize=frameSize, sampleRate=sampleRate, numberBands=6, lowFrequencyBound=20, highFrequencyBound=11000, neighbourRatio=0.4, staticDistribution=0.15) distributionshape = ess.DistributionShape() energy = ess.Energy() # energyband_bass, energyband_middle and energyband_high parameters come from "standard" hi-fi equalizers energyband_bass = ess.EnergyBand(startCutoffFrequency=20.0, stopCutoffFrequency=150.0, sampleRate=sampleRate) energyband_middle_low = ess.EnergyBand(startCutoffFrequency=150.0, stopCutoffFrequency=800.0, sampleRate=sampleRate) energyband_middle_high = ess.EnergyBand(startCutoffFrequency=800.0, stopCutoffFrequency=4000.0, sampleRate=sampleRate) energyband_high = ess.EnergyBand(startCutoffFrequency=4000.0, stopCutoffFrequency=20000.0, sampleRate=sampleRate) flatnessdb = ess.FlatnessDB() flux = ess.Flux() harmonic_peaks = ess.HarmonicPeaks() hfc = ess.HFC() mfcc = ess.MFCC() rolloff = ess.RollOff() rms = ess.RMS() strongpeak = ess.StrongPeak() # pitch algorithms pitch_detection = ess.PitchYinFFT(frameSize=frameSize, sampleRate=sampleRate) pitch_salience = ess.PitchSalience() # dissonance spectral_peaks = ess.SpectralPeaks(sampleRate=sampleRate, orderBy='frequency') dissonance = ess.Dissonance() # spectral complexity # magnitudeThreshold = 0.005 is hardcoded for a "blackmanharris62" frame spectral_complexity = ess.SpectralComplexity(magnitudeThreshold=0.005) INFO('Computing Low-Level descriptors...') # used for a nice progress display total_frames = frames.num_frames() n_frames = 0 start_of_frame = -frameSize * 0.5 pitches, pitch_confidences = [], [] progress = Progress(total=total_frames) #scPool = es.Pool() # pool for spectral contrast for frame in frames: frameScope = [start_of_frame / sampleRate, (start_of_frame + frameSize) / sampleRate] # pool.setCurrentScope(frameScope) # silence rate # pool.add(namespace + '.' + 'silence_rate_60dB', es.isSilent(frame)) pool.add(namespace + '.' + 'silence_rate_60dB', is_silent_threshold(frame, -60)) pool.add(namespace + '.' + 'silence_rate_30dB', is_silent_threshold(frame, -30)) pool.add(namespace + '.' + 'silence_rate_20dB', is_silent_threshold(frame, -20)) if options['skipSilence'] and es.isSilent(frame): total_frames -= 1 start_of_frame += hopSize continue # temporal descriptors pool.add(namespace + '.' + 'zerocrossingrate', zerocrossingrate(frame)) (frame_lpc, frame_lpc_reflection) = lpc(frame) pool.add(namespace + '.' + 'temporal_lpc', frame_lpc) frame_windowed = window(frame) frame_spectrum = spectrum(frame_windowed) # spectrum-based descriptors power_spectrum = frame_spectrum ** 2 pool.add(namespace + '.' + 'spectral_centroid', centroid(power_spectrum)) pool.add(namespace + '.' + 'spectral_decrease', decrease(power_spectrum)) pool.add(namespace + '.' + 'spectral_energy', energy(frame_spectrum)) pool.add(namespace + '.' + 'spectral_energyband_low', energyband_bass(frame_spectrum)) pool.add(namespace + '.' + 'spectral_energyband_middle_low', energyband_middle_low(frame_spectrum)) pool.add(namespace + '.' + 'spectral_energyband_middle_high', energyband_middle_high(frame_spectrum)) pool.add(namespace + '.' + 'spectral_energyband_high', energyband_high(frame_spectrum)) pool.add(namespace + '.' + 'hfc', hfc(frame_spectrum)) pool.add(namespace + '.' + 'spectral_rms', rms(frame_spectrum)) pool.add(namespace + '.' + 'spectral_flux', flux(frame_spectrum)) pool.add(namespace + '.' + 'spectral_rolloff', rolloff(frame_spectrum)) pool.add(namespace + '.' + 'spectral_strongpeak', strongpeak(frame_spectrum)) # central moments descriptors frame_centralmoments = centralmoments(power_spectrum) (frame_spread, frame_skewness, frame_kurtosis) = distributionshape(frame_centralmoments) pool.add(namespace + '.' + 'spectral_kurtosis', frame_kurtosis) pool.add(namespace + '.' + 'spectral_spread', frame_spread) pool.add(namespace + '.' + 'spectral_skewness', frame_skewness) # dissonance (frame_frequencies, frame_magnitudes) = spectral_peaks(frame_spectrum) frame_dissonance = dissonance(frame_frequencies, frame_magnitudes) pool.add(namespace + '.' + 'dissonance', frame_dissonance) # mfcc (frame_melbands, frame_mfcc) = mfcc(frame_spectrum) pool.add(namespace + '.' + 'mfcc', frame_mfcc) # spectral contrast (sc_coeffs, sc_valleys) = spectral_contrast(frame_spectrum) #scPool.add(namespace + '.' + 'sccoeffs', sc_coeffs) #scPool.add(namespace + '.' + 'scvalleys', sc_valleys) pool.add(namespace + '.' + 'spectral_contrast', sc_coeffs) # barkbands-based descriptors frame_barkbands = barkbands(frame_spectrum) pool.add(namespace + '.' + 'barkbands', frame_barkbands) pool.add(namespace + '.' + 'spectral_crest', crest(frame_barkbands)) pool.add(namespace + '.' + 'spectral_flatness_db', flatnessdb(frame_barkbands)) barkbands_centralmoments = ess.CentralMoments(range=len(frame_barkbands) - 1) (barkbands_spread, barkbands_skewness, barkbands_kurtosis) = distributionshape( barkbands_centralmoments(frame_barkbands)) pool.add(namespace + '.' + 'barkbands_spread', barkbands_spread) pool.add(namespace + '.' + 'barkbands_skewness', barkbands_skewness) pool.add(namespace + '.' + 'barkbands_kurtosis', barkbands_kurtosis) # pitch descriptors frame_pitch, frame_pitch_confidence = pitch_detection(frame_spectrum) if frame_pitch > 0 and frame_pitch <= 20000.: pool.add(namespace + '.' + 'pitch', frame_pitch) pitches.append(frame_pitch) pitch_confidences.append(frame_pitch_confidence) pool.add(namespace + '.' + 'pitch_instantaneous_confidence', frame_pitch_confidence) frame_pitch_salience = pitch_salience(frame_spectrum[:-1]) pool.add(namespace + '.' + 'pitch_salience', frame_pitch_salience) # spectral complexity pool.add(namespace + '.' + 'spectral_complexity', spectral_complexity(frame_spectrum)) # display of progress report progress.update(n_frames) n_frames += 1 start_of_frame += hopSize # if no 'temporal_zerocrossingrate' it means that this is a silent file if 'zerocrossingrate' not in descriptorNames(pool.descriptorNames(), namespace): raise ess.EssentiaError('This is a silent file!') #spectralContrastPCA(scPool, pool) # build pitch value histogram from math import log from numpy import bincount # convert from Hz to midi notes midipitches = [] unknown = 0 for freq in pitches: if freq > 0. and freq <= 12600: midipitches.append(12 * (log(freq / 6.875) / 0.69314718055995) - 3.) else: unknown += 1 if len(midipitches) > 0: # compute histogram midipitchhist = bincount(midipitches) # set 0 midi pitch to be the number of pruned value midipitchhist[0] = unknown # normalise midipitchhist = [val / float(sum(midipitchhist)) for val in midipitchhist] # zero pad for i in range(128 - len(midipitchhist)): midipitchhist.append(0.0) else: midipitchhist = [0.] * 128 midipitchhist[0] = 1. # pitchhist = ess.array(zip(range(len(midipitchhist)), midipitchhist)) pool.add(namespace + '.' + 'spectral_pitch_histogram', midipitchhist) # , pool.GlobalScope) # the code below is the same as the one above: # for note in midipitchhist: # pool.add(namespace + '.' + 'spectral_pitch_histogram_values', note) # print "midi note:", note pitch_centralmoments = ess.CentralMoments(range=len(midipitchhist) - 1) (pitch_histogram_spread, pitch_histogram_skewness, pitch_histogram_kurtosis) = distributionshape( pitch_centralmoments(midipitchhist)) pool.add(namespace + '.' + 'spectral_pitch_histogram_spread', pitch_histogram_spread) # , pool.GlobalScope) progress.finish()
def compute(audio, pool, options): INFO("Computing SFX descriptors...") # analysis parameters sampleRate = options["sampleRate"] frameSize = options["frameSize"] hopSize = options["hopSize"] windowType = options["windowType"] # frame algorithms frames = ess.FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize) window = ess.Windowing(size=frameSize, zeroPadding=0, type=windowType) spectrum = ess.Spectrum(size=frameSize) # pitch algorithm pitch_detection = ess.PitchYinFFT(frameSize=2048, sampleRate=sampleRate) # sfx descriptors spectral_peaks = ess.SpectralPeaks(sampleRate=sampleRate, orderBy="frequency") harmonic_peaks = ess.HarmonicPeaks() inharmonicity = ess.Inharmonicity() odd2evenharmonicenergyratio = ess.OddToEvenHarmonicEnergyRatio() tristimulus = ess.Tristimulus() # used for a nice progress display total_frames = frames.num_frames() n_frames = 0 start_of_frame = -frameSize * 0.5 progress = Progress(total=total_frames) for frame in frames: frameScope = [start_of_frame / sampleRate, (start_of_frame + frameSize) / sampleRate] # pool.setCurrentScope(frameScope) if options["skipSilence"] and es.isSilent(frame): total_frames -= 1 start_of_frame += hopSize continue frame_windowed = window(frame) frame_spectrum = spectrum(frame_windowed) # pitch descriptors frame_pitch, frame_pitch_confidence = pitch_detection(frame_spectrum) # spectral peaks based descriptors frame_frequencies, frame_magnitudes = spectral_peaks(frame_spectrum) # ERROR CORRECTION - hoinx 2015-12 errIdx = np.where(frame_frequencies < 1) frame_frequencies = np.delete(frame_frequencies, errIdx) frame_magnitudes = np.delete(frame_magnitudes, errIdx) (frame_harmonic_frequencies, frame_harmonic_magnitudes) = harmonic_peaks( frame_frequencies, frame_magnitudes, frame_pitch ) if len(frame_harmonic_frequencies) > 1: frame_inharmonicity = inharmonicity(frame_harmonic_frequencies, frame_harmonic_magnitudes) pool.add(namespace + "." + "inharmonicity", frame_inharmonicity) frame_tristimulus = tristimulus(frame_harmonic_frequencies, frame_harmonic_magnitudes) pool.add(namespace + "." + "tristimulus", frame_tristimulus) frame_odd2evenharmonicenergyratio = odd2evenharmonicenergyratio( frame_harmonic_frequencies, frame_harmonic_magnitudes ) pool.add(namespace + "." + "odd2evenharmonicenergyratio", frame_odd2evenharmonicenergyratio) # display of progress report progress.update(n_frames) n_frames += 1 start_of_frame += hopSize envelope = ess.Envelope() file_envelope = envelope(audio) # temporal statistics decrease = ess.Decrease() pool.add(namespace + "." + "temporal_decrease", decrease(file_envelope)) # , pool.GlobalScope) centralmoments = ess.CentralMoments() file_centralmoments = centralmoments(file_envelope) distributionshape = ess.DistributionShape() (file_spread, file_skewness, file_kurtosis) = distributionshape(file_centralmoments) pool.add(namespace + "." + "temporal_spread", file_spread) # , pool.GlobalScope) pool.add(namespace + "." + "temporal_skewness", file_skewness) # , pool.GlobalScope) pool.add(namespace + "." + "temporal_kurtosis", file_kurtosis) # , pool.GlobalScope) centroid = ess.Centroid() pool.add(namespace + "." + "temporal_centroid", centroid(file_envelope)) # , pool.GlobalScope) # effective duration effectiveduration = ess.EffectiveDuration() pool.add(namespace + "." + "effective_duration", effectiveduration(file_envelope)) # , pool.GlobalScope) # log attack time logattacktime = ess.LogAttackTime() pool.add(namespace + "." + "logattacktime", logattacktime(audio)) # , pool.GlobalScope) # strong decay strongdecay = ess.StrongDecay() pool.add(namespace + "." + "strongdecay", strongdecay(file_envelope)) # , pool.GlobalScope) # dynamic profile flatness = ess.FlatnessSFX() pool.add(namespace + "." + "flatness", flatness(file_envelope)) # , pool.GlobalScope) """ # onsets number onsets_number = len(pool['rhythm.onset_times'][0]) pool.add(namespace + '.' + 'onsets_number', onsets_number) # , pool.GlobalScope) """ # morphological descriptors max_to_total = ess.MaxToTotal() pool.add(namespace + "." + "max_to_total", max_to_total(file_envelope)) # , pool.GlobalScope) tc_to_total = ess.TCToTotal() pool.add(namespace + "." + "tc_to_total", tc_to_total(file_envelope)) # , pool.GlobalScope) derivativeSFX = ess.DerivativeSFX() (der_av_after_max, max_der_before_max) = derivativeSFX(file_envelope) pool.add(namespace + "." + "der_av_after_max", der_av_after_max) # , pool.GlobalScope) pool.add(namespace + "." + "max_der_before_max", max_der_before_max) # , pool.GlobalScope) # pitch profile """ pitch = pool['lowlevel.pitch'] if len(pitch) > 1: pool.add(namespace + '.' + 'pitch_max_to_total', max_to_total(pitch)) # , pool.GlobalScope) min_to_total = ess.MinToTotal() pool.add(namespace + '.' + 'pitch_min_to_total', min_to_total(pitch)) # , pool.GlobalScope) pitch_centroid = ess.Centroid(range=len(pitch) - 1) pool.add(namespace + '.' + 'pitch_centroid', pitch_centroid(pitch)) # , pool.GlobalScope) pitch_after_max_to_before_max_energy_ratio = ess.AfterMaxToBeforeMaxEnergyRatio() pool.add(namespace + '.' + 'pitch_after_max_to_before_max_energy_ratio', pitch_after_max_to_before_max_energy_ratio(pitch)) # , pool.GlobalScope) else: pool.add(namespace + '.' + 'pitch_max_to_total', 0.0) # , pool.GlobalScope) pool.add(namespace + '.' + 'pitch_min_to_total', 0.0) # , pool.GlobalScope) pool.add(namespace + '.' + 'pitch_centroid', 0.0) # , pool.GlobalScope) pool.add(namespace + '.' + 'pitch_after_max_to_before_max_energy_ratio', 0.0) # , pool.GlobalScope) """ progress.finish()
def compute(audio, pool, options): # analysis parameters sampleRate = options['sampleRate'] frameSize = options['frameSize'] hopSize = options['hopSize'] windowType = options['windowType'] # frame algorithms frames = essentia.FrameGenerator(audio = audio, frameSize = frameSize, hopSize = hopSize, startFromZero = True) loudness = essentia.Loudness() INFO('Computing Dynamic descriptors...') # used for a nice progress display total_frames = frames.num_frames() n_frames = 0 level_array = [] progress = Progress(total = total_frames) for frame in frames: frame_level = loudness(frame) level_array.append(frame_level) # display of progress report progress.update(n_frames) n_frames += 1 # Maximum dynamic EPSILON = 10e-6 max_value = max(level_array) if max_value <= EPSILON: max_value = EPSILON # Normalization to the maximum THRESHOLD = 0.0001 # this corresponds to -80dB for i in range(len(level_array)): level_array[i] /= max_value if level_array[i] <= THRESHOLD: level_array[i] = THRESHOLD # Dynamic Average mean = essentia.Mean() average_loudness = 10.0*log10(mean(level_array)) # re-scaling and range-control # This yields in numbers between # # 0 for signals with large dynamic variace and # thus low dynamic average # 1 for signal with little dynamic range and thus # a dynamic average close to the maximum # TO DO: [0, 0] should be pool.GlobalScope average_loudness_within_zero_to_one = squeezeInto([-5, 0], [-2, 1], average_loudness) pool.add(namespace + "." + "average_loudness", average_loudness_within_zero_to_one)#, pool.GlobalScope) # Dynamic Fluctuation ''' variance = essentia.Variance() level_variance = variance(level_array) if level_variance <= THRESHOLD: level_variance = THRESHOLD level_fluctuation = 10*log10(level_variance) # TO DO: [0, 0] should be pool.GlobalScope pool.add("level_fluctuation", level_fluctuation, pool.GlobalScope) ''' INFO('\r100% done...')
def compute(audio, pool, options): # analysis parameters sampleRate = options['sampleRate'] frameSize = options['frameSize'] hopSize = options['hopSize'] windowType = options['windowType'] # frame algorithms frames = essentia.FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize, startFromZero=True) loudness = essentia.Loudness() INFO('Computing Dynamic descriptors...') # used for a nice progress display total_frames = frames.num_frames() n_frames = 0 level_array = [] progress = Progress(total=total_frames) for frame in frames: frame_level = loudness(frame) level_array.append(frame_level) # display of progress report progress.update(n_frames) n_frames += 1 # Maximum dynamic EPSILON = 10e-6 max_value = max(level_array) if max_value <= EPSILON: max_value = EPSILON # Normalization to the maximum THRESHOLD = 0.0001 # this corresponds to -80dB for i in range(len(level_array)): level_array[i] /= max_value if level_array[i] <= THRESHOLD: level_array[i] = THRESHOLD # Dynamic Average mean = essentia.Mean() average_loudness = 10.0 * log10(mean(level_array)) # re-scaling and range-control # This yields in numbers between # # 0 for signals with large dynamic variace and # thus low dynamic average # 1 for signal with little dynamic range and thus # a dynamic average close to the maximum # TO DO: [0, 0] should be pool.GlobalScope average_loudness_within_zero_to_one = squeezeInto([-5, 0], [-2, 1], average_loudness) pool.add(namespace + "." + "average_loudness", average_loudness_within_zero_to_one) #, pool.GlobalScope) # Dynamic Fluctuation ''' variance = essentia.Variance() level_variance = variance(level_array) if level_variance <= THRESHOLD: level_variance = THRESHOLD level_fluctuation = 10*log10(level_variance) # TO DO: [0, 0] should be pool.GlobalScope pool.add("level_fluctuation", level_fluctuation, pool.GlobalScope) ''' INFO('\r100% done...')
def compute(audio, pool, options): INFO('Computing Tonal descriptors...') sampleRate = options['sampleRate'] frameSize = options['frameSize'] hopSize = options['hopSize'] zeroPadding = options['zeroPadding'] windowType = options['windowType'] frames = essentia.FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize) window = essentia.Windowing(size=frameSize, zeroPadding=zeroPadding, type=windowType) spectrum = essentia.Spectrum(size=(frameSize + zeroPadding) / 2) spectral_peaks = essentia.SpectralPeaks(maxPeaks=10000, magnitudeThreshold=0.00001, minFrequency=40, maxFrequency=5000, orderBy="frequency") tuning = essentia.TuningFrequency() # computing the tuning frequency tuning_frequency = 440.0 for frame in frames: frame_windowed = window(frame) frame_spectrum = spectrum(frame_windowed) (frame_frequencies, frame_magnitudes) = spectral_peaks(frame_spectrum) #if len(frame_frequencies) > 0: (tuning_frequency, tuning_cents) = tuning(frame_frequencies, frame_magnitudes) pool.add(namespace + '.' + 'tuning_frequency', tuning_frequency) #, pool.GlobalScope) # computing the HPCPs spectral_whitening = essentia.SpectralWhitening() hpcp_key_size = 36 hpcp_chord_size = 36 hpcp_tuning_size = 120 hpcp_key = essentia.HPCP(size=hpcp_key_size, referenceFrequency=tuning_frequency, bandPreset=False, minFrequency=40.0, maxFrequency=5000.0, weightType='squaredCosine', nonLinear=False, windowSize=4.0 / 3.0, sampleRate=sampleRate) hpcp_chord = essentia.HPCP(size=hpcp_chord_size, referenceFrequency=tuning_frequency, harmonics=8, bandPreset=True, minFrequency=40.0, maxFrequency=5000.0, splitFrequency=500.0, weightType='cosine', nonLinear=True, windowSize=0.5, sampleRate=sampleRate) hpcp_tuning = essentia.HPCP(size=hpcp_tuning_size, referenceFrequency=tuning_frequency, harmonics=8, bandPreset=True, minFrequency=40.0, maxFrequency=5000.0, splitFrequency=500.0, weightType='cosine', nonLinear=True, windowSize=0.5, sampleRate=sampleRate) # intializing the HPCP arrays hpcps_key = [] hpcps_chord = [] hpcps_tuning = [] # computing HPCP loop frames = essentia.FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize) total_frames = frames.num_frames() n_frames = 0 start_of_frame = -frameSize * 0.5 progress = Progress(total=total_frames) for frame in frames: #frameScope = [ start_of_frame / sampleRate, (start_of_frame + frameSize) / sampleRate ] #pool.setCurrentScope(frameScope) if options['skipSilence'] and essentia.isSilent(frame): total_frames -= 1 start_of_frame += hopSize continue frame_windowed = window(frame) frame_spectrum = spectrum(frame_windowed) # spectral peaks (frame_frequencies, frame_magnitudes) = spectral_peaks(frame_spectrum) if (len(frame_frequencies) > 0): # spectral_whitening frame_magnitudes_white = spectral_whitening( frame_spectrum, frame_frequencies, frame_magnitudes) frame_hpcp_key = hpcp_key(frame_frequencies, frame_magnitudes_white) frame_hpcp_chord = hpcp_chord(frame_frequencies, frame_magnitudes_white) frame_hpcp_tuning = hpcp_tuning(frame_frequencies, frame_magnitudes_white) else: frame_hpcp_key = essentia.array([0] * hpcp_key_size) frame_hpcp_chord = essentia.array([0] * hpcp_chord_size) frame_hpcp_tuning = essentia.array([0] * hpcp_tuning_size) # key HPCP hpcps_key.append(frame_hpcp_key) # add HPCP to the pool pool.add(namespace + '.' + 'hpcp', frame_hpcp_key) # chords HPCP hpcps_chord.append(frame_hpcp_chord) # tuning system HPCP hpcps_tuning.append(frame_hpcp_tuning) # display of progress report progress.update(n_frames) n_frames += 1 start_of_frame += hopSize progress.finish() # check if silent file if len(hpcps_key) == 0: raise EssentiaError('This is a silent file!') # key detection key_detector = essentia.Key(profileType='temperley') average_hpcps_key = numpy.average(essentia.array(hpcps_key), axis=0) average_hpcps_key = normalize(average_hpcps_key) # thpcps max_arg = numpy.argmax(average_hpcps_key) thpcp = [] for i in range(max_arg, len(average_hpcps_key)): thpcp.append(float(average_hpcps_key[i])) for i in range(max_arg): thpcp.append(float(average_hpcps_key[i])) pool.add(namespace + '.' + 'thpcp', thpcp) #, pool.GlobalScope ) (key, scale, key_strength, first_to_second_relative_strength) = key_detector( essentia.array(average_hpcps_key)) pool.add(namespace + '.' + 'key_key', key) #, pool.GlobalScope) pool.add(namespace + '.' + 'key_scale', scale) #, pool.GlobalScope) pool.add(namespace + '.' + 'key_strength', key_strength) #, pool.GlobalScope) # chord detection chord_detector = essentia.Key(profileType='tonictriad', usePolyphony=False) hpcp_frameSize = 2.0 # 2 seconds hpcp_number = int(hpcp_frameSize * (sampleRate / hopSize - 1)) for hpcp_index in range(len(hpcps_chord)): hpcp_index_begin = max(0, hpcp_index - hpcp_number) hpcp_index_end = min(hpcp_index + hpcp_number, len(hpcps_chord)) average_hpcps_chord = numpy.average(essentia.array( hpcps_chord[hpcp_index_begin:hpcp_index_end]), axis=0) average_hpcps_chord = normalize(average_hpcps_chord) (key, scale, strength, first_to_second_relative_strength) = chord_detector( essentia.array(average_hpcps_chord)) if scale == 'minor': chord = key + 'm' else: chord = key frame_second_scope = [ hpcp_index_begin * hopSize / sampleRate, hpcp_index_end * hopSize / sampleRate ] pool.add(namespace + '.' + 'chords_progression', chord) #, frame_second_scope) pool.add(namespace + '.' + 'chords_strength', strength) #, frame_second_scope) # tuning system features keydetector = essentia.Key(profileType='diatonic') average_hpcps_tuning = numpy.average(essentia.array(hpcps_tuning), axis=0) average_hpcps_tuning = normalize(average_hpcps_tuning) (key, scale, diatonic_strength, first_to_second_relative_strength) = keydetector( essentia.array(average_hpcps_tuning)) pool.add(namespace + '.' + 'tuning_diatonic_strength', diatonic_strength) #, pool.GlobalScope) (equal_tempered_deviation, nontempered_energy_ratio, nontempered_peaks_energy_ratio ) = essentia.HighResolutionFeatures()(average_hpcps_tuning) pool.add(namespace + '.' + 'tuning_equal_tempered_deviation', equal_tempered_deviation) #, pool.GlobalScope) pool.add(namespace + '.' + 'tuning_nontempered_energy_ratio', nontempered_energy_ratio) #, pool.GlobalScope) pool.add(namespace + '.' + 'tuning_nontempered_peaks_energy_ratio', nontempered_peaks_energy_ratio) #, pool.GlobalScope)
def compute(audio, pool, options): sampleRate = options['sampleRate'] frameSize = options['frameSize'] hopSize = options['hopSize'] zeroPadding = options['zeroPadding'] windowType = options['windowType'] frameRate = float(sampleRate) / float(frameSize - hopSize) INFO('Computing Onset Detection...') frames = essentia.FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize) window = essentia.Windowing(size=frameSize, zeroPadding=zeroPadding, type=windowType) fft = essentia.FFT() cartesian2polar = essentia.CartesianToPolar() onsetdetectionHFC = essentia.OnsetDetection(method="hfc", sampleRate=sampleRate) onsetdetectionComplex = essentia.OnsetDetection(method="complex", sampleRate=sampleRate) onsets = essentia.Onsets(frameRate=frameRate) total_frames = frames.num_frames() n_frames = 0 start_of_frame = -frameSize * 0.5 hfc = [] complex = [] progress = Progress(total=total_frames) for frame in frames: if essentia.instantPower(frame) < 1.e-4: total_frames -= 1 start_of_frame += hopSize hfc.append(0.) complex.append(0.) continue windowed_frame = window(frame) complex_fft = fft(windowed_frame) (spectrum, phase) = cartesian2polar(complex_fft) hfc.append(onsetdetectionHFC(spectrum, phase)) complex.append(onsetdetectionComplex(spectrum, phase)) # display of progress report progress.update(n_frames) n_frames += 1 start_of_frame += hopSize # The onset rate is defined as the number of onsets per seconds detections = numpy.concatenate( [essentia.array([hfc]), essentia.array([complex])]) # prune all 'doubled' detections time_onsets = list(onsets(detections, essentia.array([1, 1]))) t = 1 while t < len(time_onsets): if time_onsets[t] - time_onsets[t - 1] < 0.080: time_onsets.pop(t) else: t += 1 onsetrate = len(time_onsets) / (len(audio) / sampleRate) pool.add(namespace + '.' + "onset_times", essentia.array(time_onsets)) #, pool.GlobalScope) pool.add(namespace + '.' + "onset_rate", onsetrate) #, pool.GlobalScope) progress.finish()
def compute(audio, pool, options): INFO("Computing Beats descriptors...") sampleRate = options['sampleRate'] windowType = options['windowType'] beat_window_duration = 0.1 # 100ms beat_duration = 0.05 # 50ms estimation after checking some drums kicks duration on freesound beats = pool.value('rhythm.beats_position')[0] # special case if len(beats) == 0: # we add them 2 times to get 'mean/var' stats and not 'value' # and not on full scope so it's not global # FIXME: should use "undefined" pool.add("beats_loudness", 0.0, [0., 0.]) pool.add("beats_loudness", 0.0, [0., 0.]) pool.add("beats_loudness_bass", 0.0, [0., 0.]) pool.add("beats_loudness_bass", 0.0, [0., 0.]) INFO('100% done...') return duration = pool.value('metadata.duration_processed')[0] # FIXME: converted to samples in order to have more accurate control of the size of # the window. This is due to FFT not being able to be computed on arrays of # odd sizes. Please FIXME later, when FFT accepts all kinds of sizes. beat_window_duration = int(beat_window_duration*float(sampleRate) + 0.5) beat_duration = int(beat_duration*float(sampleRate) + 0.5) duration *= float(sampleRate) if beat_duration%2 == 1: beat_duration += 1; beat_window_duration = beat_duration*2; energy = essentia.Energy() energybandratio = essentia.EnergyBandRatio(startFrequency = 20.0, stopFrequency = 150.0, sampleRate = sampleRate) total_beats = len(beats) n_beats = 1 progress = Progress(total = total_beats) between_beats_start = [0.0] between_beats_end = [] beats_spectral_energy = 0.0 # love on the beats for beat in beats: # convert beat to samples in order to ensure an even size beat = beat*float(sampleRate) beat_window_start = (beat - beat_window_duration / 2.0) # in samples beat_window_end = (beat + beat_window_duration / 2.0) # in samples if beat_window_start > 0.0 and beat_window_end < duration: # in samples #print "duration: ", duration, "start:", beat_window_start, "end:", beat_window_end beat_window = audio[beat_window_start : beat_window_end] beat_start = beat_window_start + max_energy_index(beat_window) beat_end = beat_start + beat_duration beat_audio = audio[beat_start : beat_end] beat_scope = [beat_start / float(sampleRate), beat_end/float(sampleRate)] # in seconds #print "beat audio size: ", len(beat_audio) window = essentia.Windowing(size = len(beat_audio), zeroPadding = 0, type = windowType) spectrum = essentia.Spectrum(size = len(beat_audio)) beat_spectrum = spectrum(window(beat_audio)) beat_spectral_energy = energy(beat_spectrum) pool.add(namespace + '.' + 'beats_loudness', beat_spectral_energy)#, beat_scope) beats_spectral_energy += beat_spectral_energy beat_spectral_energybandratio = energybandratio(beat_spectrum) pool.add(namespace + '.' + 'beats_loudness_bass', beat_spectral_energybandratio)#, beat_scope) # filling between-beats arrays between_beats_end.append(beat_start/float(sampleRate)) between_beats_start.append(beat_end/float(sampleRate)) # display of progress report progress.update(n_beats/float(sampleRate)) n_beats += 1 between_beats_end.append(duration) between_beats_spectral_energy = 0.0 # love in between beats ''' for between_beat_start, between_beat_end in zip(between_beats_start, between_beats_end): between_beat_audio = audio[between_beat_start * sampleRate : between_beat_end * sampleRate] between_beat_scope = [between_beat_start, between_beat_end] window = essentia.Windowing(windowSize = len(between_beat_audio), zeroPadding = 0, type = "blackmanharris62") spectrum = essentia.Spectrum(size = len(between_beat_audio)) between_beat_spectrum = spectrum(window(between_beat_audio)) between_beat_spectral_energy = energy(between_beat_spectrum) between_beats_spectral_energy += between_beat_spectral_energy ''' progress.finish()
def compute(audio, pool, options): sampleRate = options['sampleRate'] frameSize = options['frameSize'] hopSize = options['hopSize'] zeroPadding = options['zeroPadding'] windowType = options['windowType'] frameRate = float(sampleRate)/float(frameSize - hopSize) INFO('Computing Onset Detection...') frames = essentia.FrameGenerator(audio = audio, frameSize = frameSize, hopSize = hopSize) window = essentia.Windowing(size = frameSize, zeroPadding = zeroPadding, type = windowType) fft = essentia.FFT() cartesian2polar = essentia.CartesianToPolar() onsetdetectionHFC = essentia.OnsetDetection(method = "hfc", sampleRate = sampleRate) onsetdetectionComplex = essentia.OnsetDetection(method = "complex", sampleRate = sampleRate) onsets = essentia.Onsets(frameRate = frameRate) total_frames = frames.num_frames() n_frames = 0 start_of_frame = -frameSize*0.5 hfc = [] complex = [] progress = Progress(total = total_frames) for frame in frames: if essentia.instantPower(frame) < 1.e-4 : total_frames -= 1 start_of_frame += hopSize hfc.append(0.) complex.append(0.) continue windowed_frame = window(frame) complex_fft = fft(windowed_frame) (spectrum,phase) = cartesian2polar(complex_fft) hfc.append(onsetdetectionHFC(spectrum,phase)) complex.append(onsetdetectionComplex(spectrum,phase)) # display of progress report progress.update(n_frames) n_frames += 1 start_of_frame += hopSize # The onset rate is defined as the number of onsets per seconds detections = numpy.concatenate([essentia.array([hfc]), essentia.array([complex]) ]) # prune all 'doubled' detections time_onsets = list(onsets(detections, essentia.array([1, 1]))) t = 1 while t < len(time_onsets): if time_onsets[t] - time_onsets[t-1] < 0.080: time_onsets.pop(t) else: t += 1 onsetrate = len(time_onsets) / ( len(audio) / sampleRate ) pool.add(namespace + '.' + "onset_times", essentia.array(time_onsets))#, pool.GlobalScope) pool.add(namespace + '.' + "onset_rate", onsetrate)#, pool.GlobalScope) progress.finish()
def compute(audio, pool, options): INFO('Computing Tonal descriptors...') sampleRate = options['sampleRate'] frameSize = options['frameSize'] hopSize = options['hopSize'] zeroPadding = options['zeroPadding'] windowType = options['windowType'] frames = essentia.FrameGenerator(audio = audio, frameSize = frameSize, hopSize = hopSize) window = essentia.Windowing(size = frameSize, zeroPadding = zeroPadding, type = windowType) spectrum = essentia.Spectrum(size = (frameSize + zeroPadding) / 2) spectral_peaks = essentia.SpectralPeaks(maxPeaks = 10000, magnitudeThreshold = 0.00001, minFrequency = 40, maxFrequency = 5000, orderBy = "frequency") tuning = essentia.TuningFrequency() # computing the tuning frequency tuning_frequency = 440.0 for frame in frames: frame_windowed = window(frame) frame_spectrum = spectrum(frame_windowed) (frame_frequencies, frame_magnitudes) = spectral_peaks(frame_spectrum) #if len(frame_frequencies) > 0: (tuning_frequency, tuning_cents) = tuning(frame_frequencies, frame_magnitudes) pool.add(namespace + '.' + 'tuning_frequency', tuning_frequency)#, pool.GlobalScope) # computing the HPCPs spectral_whitening = essentia.SpectralWhitening() hpcp_key_size = 36 hpcp_chord_size = 36 hpcp_tuning_size = 120 hpcp_key = essentia.HPCP(size = hpcp_key_size, referenceFrequency = tuning_frequency, bandPreset = False, minFrequency = 40.0, maxFrequency = 5000.0, weightType = 'squaredCosine', nonLinear = False, windowSize = 4.0/3.0, sampleRate = sampleRate) hpcp_chord = essentia.HPCP(size = hpcp_chord_size, referenceFrequency = tuning_frequency, harmonics = 8, bandPreset = True, minFrequency = 40.0, maxFrequency = 5000.0, splitFrequency = 500.0, weightType = 'cosine', nonLinear = True, windowSize = 0.5, sampleRate = sampleRate) hpcp_tuning = essentia.HPCP(size = hpcp_tuning_size, referenceFrequency = tuning_frequency, harmonics = 8, bandPreset = True, minFrequency = 40.0, maxFrequency = 5000.0, splitFrequency = 500.0, weightType = 'cosine', nonLinear = True, windowSize = 0.5, sampleRate = sampleRate) # intializing the HPCP arrays hpcps_key = [] hpcps_chord = [] hpcps_tuning = [] # computing HPCP loop frames = essentia.FrameGenerator(audio = audio, frameSize = frameSize, hopSize = hopSize) total_frames = frames.num_frames() n_frames = 0 start_of_frame = -frameSize * 0.5 progress = Progress(total = total_frames) for frame in frames: #frameScope = [ start_of_frame / sampleRate, (start_of_frame + frameSize) / sampleRate ] #pool.setCurrentScope(frameScope) if options['skipSilence'] and essentia.isSilent(frame): total_frames -= 1 start_of_frame += hopSize continue frame_windowed = window(frame) frame_spectrum = spectrum(frame_windowed) # spectral peaks (frame_frequencies, frame_magnitudes) = spectral_peaks(frame_spectrum) if (len(frame_frequencies) > 0): # spectral_whitening frame_magnitudes_white = spectral_whitening(frame_spectrum, frame_frequencies, frame_magnitudes) frame_hpcp_key = hpcp_key(frame_frequencies, frame_magnitudes_white) frame_hpcp_chord = hpcp_chord(frame_frequencies, frame_magnitudes_white) frame_hpcp_tuning = hpcp_tuning(frame_frequencies, frame_magnitudes_white) else: frame_hpcp_key = essentia.array([0] * hpcp_key_size) frame_hpcp_chord = essentia.array([0] * hpcp_chord_size) frame_hpcp_tuning = essentia.array([0] * hpcp_tuning_size) # key HPCP hpcps_key.append(frame_hpcp_key) # add HPCP to the pool pool.add(namespace + '.' +'hpcp', frame_hpcp_key) # chords HPCP hpcps_chord.append(frame_hpcp_chord) # tuning system HPCP hpcps_tuning.append(frame_hpcp_tuning) # display of progress report progress.update(n_frames) n_frames += 1 start_of_frame += hopSize progress.finish() # check if silent file if len(hpcps_key) == 0: raise EssentiaError('This is a silent file!') # key detection key_detector = essentia.Key(profileType = 'temperley') average_hpcps_key = numpy.average(essentia.array(hpcps_key), axis=0) average_hpcps_key = normalize(average_hpcps_key) # thpcps max_arg = numpy.argmax( average_hpcps_key ) thpcp=[] for i in range( max_arg, len(average_hpcps_key) ): thpcp.append( float(average_hpcps_key[i]) ) for i in range( max_arg ): thpcp.append( float(average_hpcps_key[i]) ) pool.add(namespace + '.' +'thpcp', thpcp)#, pool.GlobalScope ) (key, scale, key_strength, first_to_second_relative_strength) = key_detector(essentia.array(average_hpcps_key)) pool.add(namespace + '.' +'key_key', key)#, pool.GlobalScope) pool.add(namespace + '.' +'key_scale', scale)#, pool.GlobalScope) pool.add(namespace + '.' +'key_strength', key_strength)#, pool.GlobalScope) # chord detection chord_detector = essentia.Key(profileType = 'tonictriad', usePolyphony = False) hpcp_frameSize = 2.0 # 2 seconds hpcp_number = int(hpcp_frameSize * (sampleRate / hopSize - 1)) for hpcp_index in range(len(hpcps_chord)): hpcp_index_begin = max(0, hpcp_index - hpcp_number) hpcp_index_end = min(hpcp_index + hpcp_number, len(hpcps_chord)) average_hpcps_chord = numpy.average(essentia.array(hpcps_chord[hpcp_index_begin : hpcp_index_end]), axis=0) average_hpcps_chord = normalize(average_hpcps_chord) (key, scale, strength, first_to_second_relative_strength) = chord_detector(essentia.array(average_hpcps_chord)) if scale == 'minor': chord = key + 'm' else: chord = key frame_second_scope = [hpcp_index_begin * hopSize / sampleRate, hpcp_index_end * hopSize / sampleRate] pool.add(namespace + '.' +'chords_progression', chord)#, frame_second_scope) pool.add(namespace + '.' +'chords_strength', strength)#, frame_second_scope) # tuning system features keydetector = essentia.Key(profileType = 'diatonic') average_hpcps_tuning = numpy.average(essentia.array(hpcps_tuning), axis=0) average_hpcps_tuning = normalize(average_hpcps_tuning) (key, scale, diatonic_strength, first_to_second_relative_strength) = keydetector(essentia.array(average_hpcps_tuning)) pool.add(namespace + '.' +'tuning_diatonic_strength', diatonic_strength)#, pool.GlobalScope) (equal_tempered_deviation, nontempered_energy_ratio, nontempered_peaks_energy_ratio) = essentia.HighResolutionFeatures()(average_hpcps_tuning) pool.add(namespace + '.' +'tuning_equal_tempered_deviation', equal_tempered_deviation)#, pool.GlobalScope) pool.add(namespace + '.' +'tuning_nontempered_energy_ratio', nontempered_energy_ratio)#, pool.GlobalScope) pool.add(namespace + '.' +'tuning_nontempered_peaks_energy_ratio', nontempered_peaks_energy_ratio)#, pool.GlobalScope)
def compute(audio, pool, options): INFO("Computing Beats descriptors...") sampleRate = options['sampleRate'] windowType = options['windowType'] beat_window_duration = 0.1 # 100ms beat_duration = 0.05 # 50ms estimation after checking some drums kicks duration on freesound beats = pool.value('rhythm.beats_position')[0] # special case if len(beats) == 0: # we add them 2 times to get 'mean/var' stats and not 'value' # and not on full scope so it's not global # FIXME: should use "undefined" pool.add("beats_loudness", 0.0, [0., 0.]) pool.add("beats_loudness", 0.0, [0., 0.]) pool.add("beats_loudness_bass", 0.0, [0., 0.]) pool.add("beats_loudness_bass", 0.0, [0., 0.]) INFO('100% done...') return duration = pool.value('metadata.duration_processed')[0] # FIXME: converted to samples in order to have more accurate control of the size of # the window. This is due to FFT not being able to be computed on arrays of # odd sizes. Please FIXME later, when FFT accepts all kinds of sizes. beat_window_duration = int(beat_window_duration * float(sampleRate) + 0.5) beat_duration = int(beat_duration * float(sampleRate) + 0.5) duration *= float(sampleRate) if beat_duration % 2 == 1: beat_duration += 1 beat_window_duration = beat_duration * 2 energy = essentia.Energy() energybandratio = essentia.EnergyBandRatio(startFrequency=20.0, stopFrequency=150.0, sampleRate=sampleRate) total_beats = len(beats) n_beats = 1 progress = Progress(total=total_beats) between_beats_start = [0.0] between_beats_end = [] beats_spectral_energy = 0.0 # love on the beats for beat in beats: # convert beat to samples in order to ensure an even size beat = beat * float(sampleRate) beat_window_start = (beat - beat_window_duration / 2.0) # in samples beat_window_end = (beat + beat_window_duration / 2.0) # in samples if beat_window_start > 0.0 and beat_window_end < duration: # in samples #print "duration: ", duration, "start:", beat_window_start, "end:", beat_window_end beat_window = audio[beat_window_start:beat_window_end] beat_start = beat_window_start + max_energy_index(beat_window) beat_end = beat_start + beat_duration beat_audio = audio[beat_start:beat_end] beat_scope = [ beat_start / float(sampleRate), beat_end / float(sampleRate) ] # in seconds #print "beat audio size: ", len(beat_audio) window = essentia.Windowing(size=len(beat_audio), zeroPadding=0, type=windowType) spectrum = essentia.Spectrum(size=len(beat_audio)) beat_spectrum = spectrum(window(beat_audio)) beat_spectral_energy = energy(beat_spectrum) pool.add(namespace + '.' + 'beats_loudness', beat_spectral_energy) #, beat_scope) beats_spectral_energy += beat_spectral_energy beat_spectral_energybandratio = energybandratio(beat_spectrum) pool.add(namespace + '.' + 'beats_loudness_bass', beat_spectral_energybandratio) #, beat_scope) # filling between-beats arrays between_beats_end.append(beat_start / float(sampleRate)) between_beats_start.append(beat_end / float(sampleRate)) # display of progress report progress.update(n_beats / float(sampleRate)) n_beats += 1 between_beats_end.append(duration) between_beats_spectral_energy = 0.0 # love in between beats ''' for between_beat_start, between_beat_end in zip(between_beats_start, between_beats_end): between_beat_audio = audio[between_beat_start * sampleRate : between_beat_end * sampleRate] between_beat_scope = [between_beat_start, between_beat_end] window = essentia.Windowing(windowSize = len(between_beat_audio), zeroPadding = 0, type = "blackmanharris62") spectrum = essentia.Spectrum(size = len(between_beat_audio)) between_beat_spectrum = spectrum(window(between_beat_audio)) between_beat_spectral_energy = energy(between_beat_spectrum) between_beats_spectral_energy += between_beat_spectral_energy ''' progress.finish()
def compute(audio, pool, options): INFO('Computing SFX descriptors...') # analysis parameters sampleRate = options['sampleRate'] frameSize = options['frameSize'] hopSize = options['hopSize'] windowType = options['windowType'] # frame algorithms frames = essentia.FrameGenerator(audio = audio, frameSize = frameSize, hopSize = hopSize) window = essentia.Windowing(size = frameSize, zeroPadding = 0, type = windowType) spectrum = essentia.Spectrum(size = frameSize) # pitch algorithm pitch_detection = essentia.PitchDetection(frameSize = 2048, sampleRate = sampleRate) # sfx descriptors spectral_peaks = essentia.SpectralPeaks(sampleRate = sampleRate, orderBy = 'frequency') harmonic_peaks = essentia.HarmonicPeaks() inharmonicity = essentia.Inharmonicity() odd2evenharmonicenergyratio = essentia.OddToEvenHarmonicEnergyRatio() tristimulus = essentia.Tristimulus() # used for a nice progress display total_frames = frames.num_frames() n_frames = 0 start_of_frame = -frameSize*0.5 progress = Progress(total = total_frames) for frame in frames: frameScope = [ start_of_frame / sampleRate, (start_of_frame + frameSize) / sampleRate ] #pool.setCurrentScope(frameScope) if options['skipSilence'] and essentia.isSilent(frame): total_frames -= 1 start_of_frame += hopSize continue frame_windowed = window(frame) frame_spectrum = spectrum(frame_windowed) # pitch descriptors frame_pitch, frame_pitch_confidence = pitch_detection(frame_spectrum) # spectral peaks based descriptors (frame_frequencies, frame_magnitudes) = spectral_peaks(frame_spectrum) (frame_harmonic_frequencies, frame_harmonic_magnitudes) = harmonic_peaks(frame_frequencies, frame_magnitudes, frame_pitch) if len(frame_harmonic_frequencies) > 1: frame_inharmonicity = inharmonicity(frame_harmonic_frequencies, frame_harmonic_magnitudes) pool.add(namespace + '.' + 'inharmonicity', frame_inharmonicity) frame_tristimulus = tristimulus(frame_harmonic_frequencies, frame_harmonic_magnitudes) pool.add(namespace + '.' + 'tristimulus', frame_tristimulus) frame_odd2evenharmonicenergyratio = odd2evenharmonicenergyratio(frame_harmonic_frequencies, frame_harmonic_magnitudes) pool.add(namespace + '.' + 'odd2evenharmonicenergyratio', frame_odd2evenharmonicenergyratio) # display of progress report progress.update(n_frames) n_frames += 1 start_of_frame += hopSize envelope = essentia.Envelope() file_envelope = envelope(audio) # temporal statistics decrease = essentia.AudioDecrease(blockSize = len(audio)) pool.add(namespace + '.' + 'temporal_decrease', decrease(file_envelope))#, pool.GlobalScope) centralmoments = essentia.AudioCentralMoments(blockSize = len(audio)) file_centralmoments = centralmoments(file_envelope) distributionshape = essentia.DistributionShape() (file_spread, file_skewness, file_kurtosis) = distributionshape(file_centralmoments) pool.add(namespace + '.' + 'temporal_spread', file_spread)#, pool.GlobalScope) pool.add(namespace + '.' + 'temporal_skewness', file_skewness)#, pool.GlobalScope) pool.add(namespace + '.' + 'temporal_kurtosis', file_kurtosis)#, pool.GlobalScope) centroid = essentia.AudioCentroid(blockSize = len(audio)) pool.add(namespace + '.' + 'temporal_centroid', centroid(file_envelope))#, pool.GlobalScope) # effective duration effectiveduration = essentia.EffectiveDuration() pool.add(namespace + '.' + 'effective_duration', effectiveduration(file_envelope))#, pool.GlobalScope) # log attack time logattacktime = essentia.LogAttackTime() pool.add(namespace + '.' + 'logattacktime', logattacktime(audio))#, pool.GlobalScope) # strong decay strongdecay = essentia.StrongDecay() pool.add(namespace + '.' + 'strongdecay', strongdecay(file_envelope))#, pool.GlobalScope) # dynamic profile flatness = essentia.FlatnessSFX() pool.add(namespace + '.' + 'flatness', flatness(file_envelope))#, pool.GlobalScope) # onsets number onsets_number = len(pool.value('rhythm.onset_times')[0]) pool.add(namespace + '.' + 'onsets_number', onsets_number)#, pool.GlobalScope) # morphological descriptors max_to_total = essentia.MaxToTotal() pool.add(namespace + '.' + 'max_to_total', max_to_total(file_envelope))#, pool.GlobalScope) tc_to_total = essentia.TCToTotal(sampleRate = sampleRate) pool.add(namespace + '.' + 'tc_to_total', tc_to_total(file_envelope))#, pool.GlobalScope) derivativeSFX = essentia.DerivativeSFX(sampleRate = sampleRate) (der_av_after_max, max_der_before_max) = derivativeSFX(file_envelope) pool.add(namespace + '.' + 'der_av_after_max', der_av_after_max)#, pool.GlobalScope) pool.add(namespace + '.' + 'max_der_before_max', max_der_before_max)#, pool.GlobalScope) # pitch profile pitch = pool.value('lowlevel.pitch') if len(pitch) > 1: pool.add(namespace + '.' + 'pitch_max_to_total', max_to_total(pitch))#, pool.GlobalScope) min_to_total = essentia.MinToTotal() pool.add(namespace + '.' + 'pitch_min_to_total', min_to_total(pitch))#, pool.GlobalScope) pitch_centroid = essentia.Centroid(range = len(pitch)-1) pool.add(namespace + '.' + 'pitch_centroid', pitch_centroid(pitch))#, pool.GlobalScope) pitch_after_max_to_before_max_energy_ratio = essentia.AfterMaxToBeforeMaxEnergyRatio() pool.add(namespace + '.' + 'pitch_after_max_to_before_max_energy_ratio', pitch_after_max_to_before_max_energy_ratio(pitch))#, pool.GlobalScope) else: pool.add(namespace + '.' + 'pitch_max_to_total', 0.0)#, pool.GlobalScope) pool.add(namespace + '.' + 'pitch_min_to_total', 0.0)#, pool.GlobalScope) pool.add(namespace + '.' + 'pitch_centroid', 0.0)#, pool.GlobalScope) pool.add(namespace + '.' + 'pitch_after_max_to_before_max_energy_ratio', 0.0)#, pool.GlobalScope) progress.finish()
def compute(audio, pool, options): # analysis parameters sampleRate = options['sampleRate'] frameSize = options['frameSize'] hopSize = options['hopSize'] windowType = options['windowType'] # temporal descriptors lpc = essentia.LPC(order = 10, type = 'warped', sampleRate = sampleRate) zerocrossingrate = essentia.ZeroCrossingRate() # frame algorithms frames = essentia.FrameGenerator(audio = audio, frameSize = frameSize, hopSize = hopSize) window = essentia.Windowing(size = frameSize, zeroPadding = 0, type = windowType) spectrum = essentia.Spectrum(size = frameSize) # spectral algorithms barkbands = essentia.BarkBands(sampleRate = sampleRate) centralmoments = essentia.SpectralCentralMoments() crest = essentia.Crest() centroid = essentia.SpectralCentroid() decrease = essentia.SpectralDecrease() spectral_contrast = essentia.SpectralContrast(frameSize = frameSize, sampleRate = sampleRate, numberBands = 6, lowFrequencyBound = 20, highFrequencyBound = 11000, neighbourRatio = 0.4, staticDistribution = 0.15) distributionshape = essentia.DistributionShape() energy = essentia.Energy() # energyband_bass, energyband_middle and energyband_high parameters come from "standard" hi-fi equalizers energyband_bass = essentia.EnergyBand(startCutoffFrequency = 20.0, stopCutoffFrequency = 150.0, sampleRate = sampleRate) energyband_middle_low = essentia.EnergyBand(startCutoffFrequency = 150.0, stopCutoffFrequency = 800.0, sampleRate = sampleRate) energyband_middle_high = essentia.EnergyBand(startCutoffFrequency = 800.0, stopCutoffFrequency = 4000.0, sampleRate = sampleRate) energyband_high = essentia.EnergyBand(startCutoffFrequency = 4000.0, stopCutoffFrequency = 20000.0, sampleRate = sampleRate) flatnessdb = essentia.FlatnessDB() flux = essentia.Flux() harmonic_peaks = essentia.HarmonicPeaks() hfc = essentia.HFC() mfcc = essentia.MFCC() rolloff = essentia.RollOff() rms = essentia.RMS() strongpeak = essentia.StrongPeak() # pitch algorithms pitch_detection = essentia.PitchDetection(frameSize = frameSize, sampleRate = sampleRate) pitch_salience = essentia.PitchSalience() # dissonance spectral_peaks = essentia.SpectralPeaks(sampleRate = sampleRate, orderBy='frequency') dissonance = essentia.Dissonance() # spectral complexity # magnitudeThreshold = 0.005 is hardcoded for a "blackmanharris62" frame spectral_complexity = essentia.SpectralComplexity(magnitudeThreshold = 0.005) INFO('Computing Low-Level descriptors...') # used for a nice progress display total_frames = frames.num_frames() n_frames = 0 start_of_frame = -frameSize*0.5 pitches, pitch_confidences = [],[] progress = Progress(total = total_frames) scPool = essentia.Pool() # pool for spectral contrast for frame in frames: frameScope = [ start_of_frame / sampleRate, (start_of_frame + frameSize) / sampleRate ] #pool.setCurrentScope(frameScope) # silence rate pool.add(namespace + '.' + 'silence_rate_60dB', essentia.isSilent(frame)) pool.add(namespace + '.' + 'silence_rate_30dB', is_silent_threshold(frame, -30)) pool.add(namespace + '.' + 'silence_rate_20dB', is_silent_threshold(frame, -20)) if options['skipSilence'] and essentia.isSilent(frame): total_frames -= 1 start_of_frame += hopSize continue # temporal descriptors pool.add(namespace + '.' + 'zerocrossingrate', zerocrossingrate(frame)) (frame_lpc, frame_lpc_reflection) = lpc(frame) pool.add(namespace + '.' + 'temporal_lpc', frame_lpc) frame_windowed = window(frame) frame_spectrum = spectrum(frame_windowed) # spectrum-based descriptors power_spectrum = frame_spectrum ** 2 pool.add(namespace + '.' + 'spectral_centroid', centroid(power_spectrum)) pool.add(namespace + '.' + 'spectral_decrease', decrease(power_spectrum)) pool.add(namespace + '.' + 'spectral_energy', energy(frame_spectrum)) pool.add(namespace + '.' + 'spectral_energyband_low', energyband_bass(frame_spectrum)) pool.add(namespace + '.' + 'spectral_energyband_middle_low', energyband_middle_low(frame_spectrum)) pool.add(namespace + '.' + 'spectral_energyband_middle_high', energyband_middle_high(frame_spectrum)) pool.add(namespace + '.' + 'spectral_energyband_high', energyband_high(frame_spectrum)) pool.add(namespace + '.' + 'hfc', hfc(frame_spectrum)) pool.add(namespace + '.' + 'spectral_rms', rms(frame_spectrum)) pool.add(namespace + '.' + 'spectral_flux', flux(frame_spectrum)) pool.add(namespace + '.' + 'spectral_rolloff', rolloff(frame_spectrum)) pool.add(namespace + '.' + 'spectral_strongpeak', strongpeak(frame_spectrum)) # central moments descriptors frame_centralmoments = centralmoments(power_spectrum) (frame_spread, frame_skewness, frame_kurtosis) = distributionshape(frame_centralmoments) pool.add(namespace + '.' + 'spectral_kurtosis', frame_kurtosis) pool.add(namespace + '.' + 'spectral_spread', frame_spread) pool.add(namespace + '.' + 'spectral_skewness', frame_skewness) # dissonance (frame_frequencies, frame_magnitudes) = spectral_peaks(frame_spectrum) frame_dissonance = dissonance(frame_frequencies, frame_magnitudes) pool.add(namespace + '.' + 'dissonance', frame_dissonance) # mfcc (frame_melbands, frame_mfcc) = mfcc(frame_spectrum) pool.add(namespace + '.' + 'mfcc', frame_mfcc) # spectral contrast (sc_coeffs, sc_valleys) = spectral_contrast(frame_spectrum) scPool.add(namespace + '.' + 'sccoeffs', sc_coeffs) scPool.add(namespace + '.' + 'scvalleys', sc_valleys) # barkbands-based descriptors frame_barkbands = barkbands(frame_spectrum) pool.add(namespace + '.' + 'barkbands', frame_barkbands) pool.add(namespace + '.' + 'spectral_crest', crest(frame_barkbands)) pool.add(namespace + '.' + 'spectral_flatness_db', flatnessdb(frame_barkbands)) barkbands_centralmoments = essentia.CentralMoments(range = len(frame_barkbands) - 1) (barkbands_spread, barkbands_skewness, barkbands_kurtosis) = distributionshape(barkbands_centralmoments(frame_barkbands)) pool.add(namespace + '.' + 'barkbands_spread', barkbands_spread) pool.add(namespace + '.' + 'barkbands_skewness', barkbands_skewness) pool.add(namespace + '.' + 'barkbands_kurtosis', barkbands_kurtosis) # pitch descriptors frame_pitch, frame_pitch_confidence = pitch_detection(frame_spectrum) if frame_pitch > 0 and frame_pitch <= 20000.: pool.add(namespace + '.' + 'pitch', frame_pitch) pitches.append(frame_pitch) pitch_confidences.append(frame_pitch_confidence) pool.add(namespace + '.' + 'pitch_instantaneous_confidence', frame_pitch_confidence) frame_pitch_salience = pitch_salience(frame_spectrum[:-1]) pool.add(namespace + '.' + 'pitch_salience', frame_pitch_salience) # spectral complexity pool.add(namespace + '.' + 'spectral_complexity', spectral_complexity(frame_spectrum)) # display of progress report progress.update(n_frames) n_frames += 1 start_of_frame += hopSize # if no 'temporal_zerocrossingrate' it means that this is a silent file if 'zerocrossingrate' not in descriptorNames(pool.descriptorNames(), namespace): raise essentia.EssentiaError('This is a silent file!') spectralContrastPCA(scPool, pool) # build pitch value histogram from math import log from numpy import bincount # convert from Hz to midi notes midipitches = [] unknown = 0 for freq in pitches: if freq > 0. and freq <= 12600: midipitches.append(12*(log(freq/6.875)/0.69314718055995)-3.) else: unknown += 1 if len(midipitches) > 0: # compute histogram midipitchhist = bincount(midipitches) # set 0 midi pitch to be the number of pruned value midipitchhist[0] = unknown # normalise midipitchhist = [val/float(sum(midipitchhist)) for val in midipitchhist] # zero pad for i in range(128 - len(midipitchhist)): midipitchhist.append(0.0) else: midipitchhist = [0.]*128 midipitchhist[0] = 1. # pitchhist = essentia.array(zip(range(len(midipitchhist)), midipitchhist)) pool.add(namespace + '.' + 'spectral_pitch_histogram', midipitchhist)#, pool.GlobalScope) # the code below is the same as the one above: #for note in midipitchhist: # pool.add(namespace + '.' + 'spectral_pitch_histogram_values', note) # print "midi note:", note pitch_centralmoments = essentia.CentralMoments(range = len(midipitchhist) - 1) (pitch_histogram_spread, pitch_histogram_skewness, pitch_histogram_kurtosis) = distributionshape(pitch_centralmoments(midipitchhist)) pool.add(namespace + '.' + 'spectral_pitch_histogram_spread', pitch_histogram_spread)#, pool.GlobalScope) progress.finish()
def compute(audio, pool, options): INFO('Computing SFX descriptors...') # analysis parameters sampleRate = options['sampleRate'] frameSize = options['frameSize'] hopSize = options['hopSize'] windowType = options['windowType'] # frame algorithms frames = essentia.FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize) window = essentia.Windowing(size=frameSize, zeroPadding=0, type=windowType) spectrum = essentia.Spectrum(size=frameSize) # pitch algorithm pitch_detection = essentia.PitchDetection(frameSize=2048, sampleRate=sampleRate) # sfx descriptors spectral_peaks = essentia.SpectralPeaks(sampleRate=sampleRate, orderBy='frequency') harmonic_peaks = essentia.HarmonicPeaks() inharmonicity = essentia.Inharmonicity() odd2evenharmonicenergyratio = essentia.OddToEvenHarmonicEnergyRatio() tristimulus = essentia.Tristimulus() # used for a nice progress display total_frames = frames.num_frames() n_frames = 0 start_of_frame = -frameSize * 0.5 progress = Progress(total=total_frames) for frame in frames: frameScope = [ start_of_frame / sampleRate, (start_of_frame + frameSize) / sampleRate ] #pool.setCurrentScope(frameScope) if options['skipSilence'] and essentia.isSilent(frame): total_frames -= 1 start_of_frame += hopSize continue frame_windowed = window(frame) frame_spectrum = spectrum(frame_windowed) # pitch descriptors frame_pitch, frame_pitch_confidence = pitch_detection(frame_spectrum) # spectral peaks based descriptors (frame_frequencies, frame_magnitudes) = spectral_peaks(frame_spectrum) (frame_harmonic_frequencies, frame_harmonic_magnitudes) = harmonic_peaks(frame_frequencies, frame_magnitudes, frame_pitch) if len(frame_harmonic_frequencies) > 1: frame_inharmonicity = inharmonicity(frame_harmonic_frequencies, frame_harmonic_magnitudes) pool.add(namespace + '.' + 'inharmonicity', frame_inharmonicity) frame_tristimulus = tristimulus(frame_harmonic_frequencies, frame_harmonic_magnitudes) pool.add(namespace + '.' + 'tristimulus', frame_tristimulus) frame_odd2evenharmonicenergyratio = odd2evenharmonicenergyratio( frame_harmonic_frequencies, frame_harmonic_magnitudes) pool.add(namespace + '.' + 'odd2evenharmonicenergyratio', frame_odd2evenharmonicenergyratio) # display of progress report progress.update(n_frames) n_frames += 1 start_of_frame += hopSize envelope = essentia.Envelope() file_envelope = envelope(audio) # temporal statistics decrease = essentia.AudioDecrease(blockSize=len(audio)) pool.add(namespace + '.' + 'temporal_decrease', decrease(file_envelope)) #, pool.GlobalScope) centralmoments = essentia.AudioCentralMoments(blockSize=len(audio)) file_centralmoments = centralmoments(file_envelope) distributionshape = essentia.DistributionShape() (file_spread, file_skewness, file_kurtosis) = distributionshape(file_centralmoments) pool.add(namespace + '.' + 'temporal_spread', file_spread) #, pool.GlobalScope) pool.add(namespace + '.' + 'temporal_skewness', file_skewness) #, pool.GlobalScope) pool.add(namespace + '.' + 'temporal_kurtosis', file_kurtosis) #, pool.GlobalScope) centroid = essentia.AudioCentroid(blockSize=len(audio)) pool.add(namespace + '.' + 'temporal_centroid', centroid(file_envelope)) #, pool.GlobalScope) # effective duration effectiveduration = essentia.EffectiveDuration() pool.add(namespace + '.' + 'effective_duration', effectiveduration(file_envelope)) #, pool.GlobalScope) # log attack time logattacktime = essentia.LogAttackTime() pool.add(namespace + '.' + 'logattacktime', logattacktime(audio)) #, pool.GlobalScope) # strong decay strongdecay = essentia.StrongDecay() pool.add(namespace + '.' + 'strongdecay', strongdecay(file_envelope)) #, pool.GlobalScope) # dynamic profile flatness = essentia.FlatnessSFX() pool.add(namespace + '.' + 'flatness', flatness(file_envelope)) #, pool.GlobalScope) # onsets number onsets_number = len(pool.value('rhythm.onset_times')[0]) pool.add(namespace + '.' + 'onsets_number', onsets_number) #, pool.GlobalScope) # morphological descriptors max_to_total = essentia.MaxToTotal() pool.add(namespace + '.' + 'max_to_total', max_to_total(file_envelope)) #, pool.GlobalScope) tc_to_total = essentia.TCToTotal(sampleRate=sampleRate) pool.add(namespace + '.' + 'tc_to_total', tc_to_total(file_envelope)) #, pool.GlobalScope) derivativeSFX = essentia.DerivativeSFX(sampleRate=sampleRate) (der_av_after_max, max_der_before_max) = derivativeSFX(file_envelope) pool.add(namespace + '.' + 'der_av_after_max', der_av_after_max) #, pool.GlobalScope) pool.add(namespace + '.' + 'max_der_before_max', max_der_before_max) #, pool.GlobalScope) # pitch profile pitch = pool.value('lowlevel.pitch') if len(pitch) > 1: pool.add(namespace + '.' + 'pitch_max_to_total', max_to_total(pitch)) #, pool.GlobalScope) min_to_total = essentia.MinToTotal() pool.add(namespace + '.' + 'pitch_min_to_total', min_to_total(pitch)) #, pool.GlobalScope) pitch_centroid = essentia.Centroid(range=len(pitch) - 1) pool.add(namespace + '.' + 'pitch_centroid', pitch_centroid(pitch)) #, pool.GlobalScope) pitch_after_max_to_before_max_energy_ratio = essentia.AfterMaxToBeforeMaxEnergyRatio( ) pool.add(namespace + '.' + 'pitch_after_max_to_before_max_energy_ratio', pitch_after_max_to_before_max_energy_ratio( pitch)) #, pool.GlobalScope) else: pool.add(namespace + '.' + 'pitch_max_to_total', 0.0) #, pool.GlobalScope) pool.add(namespace + '.' + 'pitch_min_to_total', 0.0) #, pool.GlobalScope) pool.add(namespace + '.' + 'pitch_centroid', 0.0) #, pool.GlobalScope) pool.add(namespace + '.' + 'pitch_after_max_to_before_max_energy_ratio', 0.0) #, pool.GlobalScope) progress.finish()