experiment = VAEXperiment(model, config['exp_params']) runner = Trainer(default_save_path=f"{tt_logger.save_dir}", min_nb_epochs=1, logger=tt_logger, log_save_interval=100, train_percent_check=1., val_percent_check=1., num_sanity_val_steps=5, early_stop_callback=False, **config['trainer_params']) print(f"======= Training {config['model_params']['name']} =======") load_dict = torch.load(config.ckpt_path) experiment.load_state_dict(load_dict['state_dict']) experiment.cuda() experiment.eval() sample_dataloader = experiment.train_dataloader() test_input, test_label = next(iter(sample_dataloader)) #test_input = test_input.to('cuda') test_label = test_label.to('cuda') #imgs = experiment.model.sample(num_samples=64, current_device=0) test_input = scio.loadmat('./cifar10_index.mat') test_input = torch.Tensor(test_input['data']).to('cuda') imgs_recon = experiment.model.generate(test_input, labels=test_label) FID_IS_tf = build_GAN_metric(config.GAN_metric) class SampleFunc(object): def __init__(self, model):
with open(args.filename, 'r') as file: try: config = yaml.safe_load(file) except yaml.YAMLError as exc: print(exc) with torch.no_grad(): model = vae_models[config['model_params']['name']]( **config['model_params']) test = VAEXperiment(model, config['exp_params']) checkpoint = torch.load(args.ckpt, map_location=lambda storage, loc: storage) test.load_state_dict(checkpoint['state_dict']) test = test.model if args.gpu: test = test.cuda() if args.eval: test.eval() if args.parallel: test = torch.nn.DataParallel(test) test = test.module xsize = args.xsize ysize = args.ysize zsize = args.zsize blocksize = args.blocksize dim = args.dimension error_bound = args.error eps = args.epsilon global_max = args.max global_min = args.min