dl = dl.reshape((latent_size, -1)).transpose() else: dl = dl.reshape((-1, latent_size)) else: ql = latents dl = latents if args.transpose: dl = dl.reshape((latent_size, -1)).transpose() else: dl = dl.reshape((-1, latent_size)) with torch.no_grad(): if args.gpu: if args.split == 0: predict = test.decode( torch.from_numpy(dl).to(device)).cpu().detach().numpy() else: split = args.split len_dl = dl.shape[0] start = 0 predict = None while (start < len_dl): end = min(len_dl, start + split) dl_split = dl[start:end] predict_s = test.decode( torch.from_numpy(dl_split).to( device)).cpu().detach().numpy() if start == 0: predict = predict_s else: predict = np.concatenate((predict, predict_s))
if args.mode != "d": with torch.no_grad(): #try: outputs = test(torch.from_numpy(picts).to(device)) zs = outputs[2].cpu().detach().numpy() predict = outputs[0].cpu().detach().numpy() else: zs = np.fromfile(args.latents, dtype=np.float32) if args.transpose: zs = zs.reshape((args.lsize, -1)).transpose() else: zs = zs.reshape((-1, args.lsize)) with torch.no_grad(): if args.gpu: predict = test.decode( torch.from_numpy(zs).to(device)).cpu().detach().numpy() else: predict = test.decode(torch.from_numpy(zs)).detach().numpy() #predict=outputs[0].numpy() print(zs.shape) #print(predict.size) qs = [] us = [] recon = np.zeros((height, width), dtype=np.float32) eb = args.error * rng if args.normalize: picts = (picts + 1) / 2 picts = picts * (global_max - global_min) + global_min predict = (predict + 1) / 2 predict = predict * (global_max - global_min) + global_min