def reload_and_feature(picall, feature_type, average, nmel, order_frft, nmfcc, saveprojectpath, savedata, savepic, savetestdata, savepreprocess, savefeature, path, downsample_rate, frame_time, frame_length, frame_overlap, test_rate): ''' fe.stft, # 0 fe.zero_crossing_rate, # 1 fe.energy, # 2 fe.entropy_of_energy, # 3 fe.spectral_centroid_spread, # 4 fe.spectral_entropy, # 5 fe.spectral_flux, # 6 fe.spectral_rolloff, # 7 fe.bandwidth, # 8 fe.mfccs, # 9 fe.rms # 10 fe.stfrft # 11 fe.frft_mfcc # 12 ''' labelname = os.listdir(path) # 获取该数据集路径下的子文件名 if not os.path.exists(savefeature): os.mkdir(savefeature) # 创建保存特征结果的文件 for i in range(len(labelname)): if not os.path.exists(savefeature + '\\' + labelname[i]): os.mkdir(savefeature + '\\' + labelname[i]) datafile = open(savepreprocess, encoding='utf-8') # 读取预处理结果 csv_reader = csv.reader(datafile) # 以这种方式读取文件得到的结果是一个迭代器 feature_set = [] # 当使用统计量作为特征时,将所有样本的特征缓存入该变量以进行归一化 for row in csv_reader: # row中的元素是字符类型 time_series = np.array(row[2:]).astype( 'float32') # row的前两个元素分别是标签和对应文件次序 ####################################################################### frames = preprocessing.frame(time_series, frame_length, frame_overlap) # 分帧 f, t, stft = fe.stft(time_series, pic=None, fs=downsample_rate, nperseg=frame_length, noverlap=frame_length - frame_overlap, nfft=8192, boundary=None, padded=False) # if stft.shape[1] != frames.shape[1]: # 防止stft的时间个数和帧的个数不一样 # dim = min(stft.shape[1], frames.shape[1]) # stft = stft[:, 0:dim] # frames = frames[:, 0:dim] # Mel = lib.feature.melspectrogram(S=np.abs(stft), sr=downsample_rate, n_fft=2*(stft.shape[0]-1), n_mels=512) feature_list = [] # 用于存放各种类型的特征,每个帧对应一个特征向量,其元素分别是每种类型的特征 if picall: # 用于绘图控制 pic = savepic + '\\' + row[0] + '_' + row[1] else: pic = None for i in feature_type: if i == 0: feature0 = np.abs(stft) feature_list.append(feature0) elif i == 1: feature1 = fe.zero_crossing_rate(frames, pic=pic) feature_list.append(feature1) elif i == 2: feature2 = fe.energy(frames, pic=pic) feature_list.append(feature2) elif i == 3: feature3 = fe.entropy_of_energy(frames, pic=pic) feature_list.append(feature3) elif i == 4: feature4, feature41 = fe.spectral_centroid_spread( stft, downsample_rate, pic=pic) feature_list.append(feature4) feature_list.append(feature41) elif i == 5: feature5 = fe.spectral_entropy(stft, pic=pic) feature_list.append(feature5) elif i == 6: feature6 = fe.spectral_flux(stft, pic=pic) feature_list.append(feature6) elif i == 7: feature7 = fe.spectral_rolloff(stft, 0.85, downsample_rate, pic=pic) feature_list.append(feature7) elif i == 8: feature8 = fe.bandwidth(stft, f, pic=pic) feature_list.append(feature8) elif i == 9: feature9 = fe.mfccs( X=stft, fs=downsample_rate, # nfft=2*(stft.shape[0]-1), nfft=8192, n_mels=nmel, n_mfcc=nmfcc, pic=pic) feature_list.append(feature9) elif i == 10: feature10 = fe.rms(stft, pic=pic) feature_list.append(feature10) elif i == 11: feature11 = fe.stfrft(frames, p=order_frft[int(row[0])], pic=pic) feature_list.append(feature11) elif i == 12: tmp = fe.stfrft(frames, p=order_frft[int(row[0])]) feature12 = fe.frft_MFCC(S=tmp, fs=downsample_rate, n_mfcc=nmfcc, n_mels=nmel, pic=pic) feature_list.append(feature12) elif i == 13: feature13, feature13_ = fe.fundalmental_freq( frames=frames, fs=downsample_rate, pic=pic) feature_list.append(feature13) elif i == 14: feature14 = fe.chroma_stft(S=stft, n_chroma=12, A440=440.0, ctroct=5.0, octwidth=2, base_c=True, norm=2) feature_list.append(feature14) elif i == 15: feature15 = fe.log_attack_time(x=time_series, lower_ratio=0.02, upper_ratio=0.99, fs=downsample_rate, n=frames.shape[1]) feature_list.append(feature15) elif i == 16: feature16 = fe.temoporal_centroid(S=stft, hop_length=frame_overlap, fs=downsample_rate) feature_list.append(feature16) elif i == 17: # harm_freq, harm_mag = fe.harmonics(nfft=8192, nht=0.15, f=f, S=stft, fs=downsample_rate, fmin=50, fmax=500, threshold=0.2) # hsc = fe.harmonic_spectral_centroid(harm_freq, harm_mag) # hsd = fe.harmonic_spectral_deviation(harm_mag) # hss = fe.harmonic_spectral_spread(hsc, harm_freq, harm_mag) # hsv = fe.harmonic_spectral_variation(harm_mag) # feature17 = np.concatenate([hsc, hsd, hss, hsv], axis=0) # feature_list.append(feature17) harm_freq, harm_mag = timbral.harmonics(frames=frames, fs=downsample_rate, S=stft, f=f, nfft=8192, fmin=50, fmax=500, nht=0.15) hsc = timbral.harmonic_spectral_centroid(harm_freq, harm_mag) hsd = timbral.harmonic_spectral_deviation(harm_mag) hss = timbral.harmonic_spectral_spread(hsc, harm_freq, harm_mag) hsv = timbral.harmonic_spectral_variation(harm_mag) feature17 = np.concatenate([hsc, hsd, hss, hsv], axis=0) feature_list.append(feature17) elif i == 18: feature18 = fe.pitches_mag_CDSV(f=f, S=stft, fs=downsample_rate, fmin=50, fmax=downsample_rate / 2, threshold=0.2) feature_list.append(feature18) elif i == 19: feature19 = fe.delta_features(feature9, order=1) feature_list.append(feature19) elif i == 20: feature20 = fe.delta_features(feature9, order=2) feature_list.append(feature20) features = np.concatenate([j for j in feature_list], axis=0) # 我很欣赏这一句代码,将各种特征拼在一起 long = list(range(features.shape[1])) # 删除含有nan的帧 for t in long[::-1]: if np.isnan(features[:, t]).any(): features = np.delete(features, t, 1) if average: # 使用统计量作为特征 mean = np.mean(features, axis=1).reshape( 1, features.shape[0]) # 原来的特征向量是列向量,这里转成行向量 var = np.var(features, axis=1).reshape(1, features.shape[0]) # std = np.std(features, axis=1).reshape(1, features.shape[0]) # ske = np.zeros((1, features.shape[0])) # kur = np.zeros((1, features.shape[0])) # for n in range(features.shape[0]): # ske[0, i] = sts.skewness(features[i, :]) # kur[0, i] = sts.kurtosis(features[i, :]) features = np.concatenate([ mean, var, np.array([int(row[0]), int(row[1])]).reshape(1, 2) ], axis=1) # 使用统计平均代替每个帧的特征 feature_set.append(features) else: scale = StandardScaler().fit(features) features = scale.transform(features) # 进行归一化 csv_path = savefeature + '\\' + labelname[int( row[0])] + '\\' + row[0] + '_' + row[1] + '.csv' with open(csv_path, 'w', encoding='utf-8', newline='') as csvfile: csv_writer = csv.writer(csvfile) buffer = np.concatenate([ features.T, int(row[0]) * np.ones((features.shape[1], 1)), int(row[1]) * np.ones((features.shape[1], 1)) ], axis=1) csv_writer.writerows(buffer) print('featuring:', row[0], row[1]) datafile.close() # 关闭文件,避免不必要的错误 if average: # 使用统计量作为特征 features = np.concatenate([k for k in feature_set], axis=0) # 我很欣赏这一句代码 行表示样本数,列表示特征数 tmp = features[:, -2:] # 防止归一化的时候把标签也归一化 features = features[:, 0:-2] scale = StandardScaler().fit(features) features = scale.transform(features) # 进行归一化 features = np.concatenate([features, tmp], axis=1) # 把之前分开的特征和标签拼在一起 for k in range(features.shape[0]): csv_path = savefeature + '\\' + labelname[int(features[k, -2])] + \ '\\' + str(int(features[k, -2])) + '_' + str(int(features[k, -1])) + '.csv' with open(csv_path, 'w', encoding='utf-8', newline='') as csvfile: csv_writer = csv.writer(csvfile) # 每个音频文件只有一个特征向量,并存入一个csv文件 csv_writer.writerow(features[k, :]) # 注意这里写入的是一行,要用writerow
def start_predict_offline(): if file_text.get("1.0", END) == []: messagebox.showerror("Error", "Please select test file!") return else: test_file = file_text.get("1.0", END) test_file = test_file.split("\n")[0] if model_text.get("1.0", END) == []: messagebox.showerror("Error", "Please select test model!") return else: offline_model = model_text.get("1.0", END) offline_model = offline_model.split("\n")[0] test_config = pd.read_csv(offline_model.split(".")[0] + ".txt", sep=" ") test_config.columns = ['param', 'value'] test_config = pd.DataFrame(data=[test_config['value'].values], columns=test_config['param'].values) if test_config['filter'].values[0] == '1': filter_order = int(test_config['order'].values[0]) filter_fc = test_config['fc'].values[0] filter_type = test_config['type'].values[0] filter_fs = int(test_config['fs'].values[0]) if filter_type == "bandpass" or filter_type == "bandstop": fc = filter_fc.split("[")[1].split("]")[0].split(",") filter_fc = [int(fc[0]), int(fc[1])] else: filter_fc = int(filter_fc) if test_config['smooth'].values[0] == '1': smooth_wl = int(test_config['windowlength'].values[0]) smooth_po = int(test_config['polyorder'].values[0]) smooth_mode = test_config['mode'].values[0] if test_config['eliminate'].values[0] == '1': elim_thre = int(test_config['threshold'].values[0]) elim_ws = int(test_config['windowsize'].values[0]) elim_base = int(test_config['baseon'].values[0]) if test_config['energy'].values[0] == '1': eng_bs = int(test_config['bandsize'].values[0]) eng_odr = int(test_config['odr'].values[0]) seg_size = int(test_config['segsize'].values[0]) files = pd.read_csv(test_file) final_features = [] labels = [] for idx, row in files.iterrows(): name = row['file'] dir = row['dir'] label = row['label'] header = row['header'] raw_data = pd.read_csv(dir + '\\' + '\\' + name, header=header, delimiter=';') ax = raw_data['ax'] ay = raw_data['ay'] az = raw_data['az'] data = np.array([ax, ay, az]).T if test_config['filter'].values[0] == '1': data = data_preprocessing.filter(data, filter_order, filter_fc, filter_type, filter_fs) if test_config['smooth'].values[0] == '1': smoothed_data = data_preprocessing.smooth(data, smooth_wl, smooth_po, smooth_mode) if test_config['eliminate'].values[0] == '1': new_smoothed_data, data = data_preprocessing.eliminate_abnormal_value(smoothed_data, data, elim_ws, elim_thre, elim_base) else: data = smoothed_data num = int(test_config['mean'].values[0]) + int(test_config['std'].values[0]) + int(test_config['min'].values[0]) + int(test_config['max'].values[0]) + int(test_config['rms'].values[0]) for col in range(3): feature = np.empty([int(len(data[:, col])/seg_size), num]) new_feature = [] for i in range(int(len(data[:, col])/seg_size)): window = data[i*seg_size:(i+1)*seg_size, col] k = 0 if int(test_config['mean'].values[0]): feature[i, k] = feature_extraction.mean(window) k += 1; if int(test_config['std'].values[0]): feature[i, k] = feature_extraction.std(window) k += 1; if int(test_config['min'].values[0]): feature[i, k] = feature_extraction.getmin(window) k += 1; if int(test_config['max'].values[0]): feature[i, k] = feature_extraction.getmax(window) k += 1; if int(test_config['rms'].values[0]): feature[i, k] = feature_extraction.rms(window) k += 1; if int(test_config['energy'].values[0]): energy_vector = feature_extraction.energy_for_each_freq_band(window, eng_odr, eng_bs) temp = np.append(feature[i, :], energy_vector) new_feature.append(temp) else: new_feature.append(feature[i, :]) new_feature = np.array(new_feature) #print("new_feature: ", new_feature.shape) if col == 0: ex_feature = new_feature else: ex_feature = np.append(ex_feature, new_feature, axis=1) #print("ex_feature: ", ex_feature.shape) num_features = ex_feature.shape[1] // 3 num_axis = int(test_config['X'].values[0]) +int(test_config['Y'].values[0]) + int(test_config['Z'].values[0]) trn_feature = np.empty([ex_feature.shape[0], num_axis*num_features]) k = 0 if int(test_config['X'].values[0]) == 1: trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, 0:num_features] k += 1 if int(test_config['Y'].values[0]) == 1: trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features:num_features*2] k += 1 if int(test_config['Z'].values[0]) == 1: trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features*2:num_features*3] k += 1; final_features.extend(trn_feature) for i in range(len(trn_feature)): labels.append(label) final_features = np.array(final_features) labels = np.array(labels) test_model = pickle.load(open(offline_model, 'rb')) pred = test_model.predict(final_features) acc_tst = accuracy_score(labels, pred) lb_acc_tst = Label(offline, text=acc_tst, font=("Helvetica", "12", "bold italic")) lb_acc_tst.place(relx=0.6, rely=0.28)
def startTrain(): model = en_model.get() if model == "": messagebox.showerror("Error", "Please select the training model!") return trn_ratio = var_ratio.get() file_idx = trn_files.curselection() filename = "" if file_idx == (): messagebox.showerror("Error", "Please select the training files!") return else: filename = trn_files.get(file_idx) # Detect if a filter is used and pass all filter parameter to the function if var_filter.get() == 1: if en_order.get() != "" and en_fc.get() != "" and en_type.get() != "" and en_fs.get() != "": filter_order = int(en_order.get()) filter_fc = en_fc.get() filter_type = en_type.get() filter_fs = int(en_fs.get()) if filter_type == "bandpass" or filter_type == "bandstop": if filter_fc.split("[")[0] != "": messagebox.showerror("Error", "The form of fc should be like \'[fc1, fc2]\'!") return fc = filter_fc.split("[")[1].split("]")[0].split(",") filter_fc = [int(fc[0]), int(fc[1])] else: filter_fc = int(filter_fc) else: messagebox.showerror("Error", "Please set all the parameters of Filter!") return # Detect if smoothing is used and pass all filter parameter to the function if var_smooth.get() == 1: if en_wl.get() != "" and en_po.get() != "" and en_mode.get() != "": smooth_wl = int(en_wl.get()) smooth_po = int(en_po.get()) smooth_mode = en_mode.get() if smooth_wl % 2 == 0: messagebox.showerror("Error", "The window length should be odd!") return else: messagebox.showerror("Error", "Please set all the parameters of Smoothing!") return if var_elim.get() == 1: if en_thre.get() != "" and en_win.get() != "": elim_thre = int(en_thre.get()) elim_ws = int(en_win.get()) else: messagebox.showerror("Error", "Please set all the parameters of Eliminate Abnormal Data!") return if var_energy.get() == 1: if en_bs.get() != "" and en_odr.get() != "": eng_bs = int(en_bs.get()) eng_odr = int(en_odr.get()) else: messagebox.showerror("Error", "Please set all the parameters of Energy!") return if en_ws.get() != "": seg_size = int(en_ws.get()) else: messagebox.showerror("Error", "Please set the segment size!") return if var_accel_x.get() == 0 and var_accel_y.get() == 0 and var_accel_z.get() == 0: messagebox.showerror("Error", "Please select at least one axis!") return if (var_base.get() == 1 and var_accel_x.get() == 0) or (var_base.get() == 2 and var_accel_y.get() == 0) or (var_base.get() == 3 and var_accel_z.get() == 0): messagebox.showerror("Error", "Please select the axis that is select in Axis Selection!") return if var_mean.get() + var_std.get() + var_min.get() + var_max.get() + var_rms.get() + var_energy.get() == 0: messagebox.showerror("Error", "Please select at least one feature!") return save_model = filedialog.asksaveasfilename(initialdir = "/", title = "Save Model", filetypes = (("sav files","*.sav"), ("all files", "*.*"))) if save_model == "": return if len(save_model.split(".")) == 1: save_model = save_model + '.sav' ### write model configuration parts = save_model.split('/') directory = '/'.join(parts[0:len(parts)-1]) txtName = parts[len(parts)-1].split('.')[0] + '.txt' pb['value'] = 10 trn.update_idletasks() time.sleep(0.5) f = open(directory + '/' + txtName, "w+") f.write("param value\n") if var_filter.get() == 1: f.write("filter 1\n") f.write("order %d\n" %filter_order) f.write("fc %d\n" %filter_fc) f.write("type " + filter_type + "\n") f.write("fs %d\n" %filter_fs) else: f.write("filter 0\n") if var_smooth.get() == 1: f.write("smooth 1\n") f.write("windowlength %d\n" %smooth_wl) f.write("polyorder %d\n" %smooth_po) f.write("mode " + smooth_mode + "\n") else: f.write("smooth 0\n") if var_elim.get() == 1: f.write("eliminate 1\n") f.write("threshold %d\n" %elim_thre) f.write("windowsize %d\n" %elim_ws) f.write("baseon %d\n" %var_base.get()) else: f.write("eliminate 0\n") f.write("X %d\n" %var_accel_x.get()) f.write("Y %d\n" %var_accel_y.get()) f.write("Z %d\n" %var_accel_z.get()) f.write("mean %d\n" %var_mean.get()) f.write("std %d\n" %var_std.get()) f.write("min %d\n" %var_min.get()) f.write("max %d\n" %var_max.get()) f.write("rms %d\n" %var_rms.get()) f.write("energy %d\n" %var_energy.get()) if var_energy.get() == 1: f.write("bandsize %d\n" %eng_bs) f.write("odr %d\n" %eng_odr) f.write("segsize %d\n" %seg_size) f.close() files = pd.read_csv(filename) final_features = [] labels = [] num_rows = files.shape[0] for idx, row in files.iterrows(): name = row['file'] dir = row['dir'] label = row['label'] header = row['header'] raw_data = pd.read_csv(dir + '\\' + '\\' + name, header=header, delimiter=';') ax = raw_data['ax'] ay = raw_data['ay'] az = raw_data['az'] data = np.array([ax, ay, az]).T if var_filter.get() == 1: data = data_preprocessing.filter(data, filter_order, filter_fc, filter_type, filter_fs) if var_smooth.get() == 1: smoothed_data = data_preprocessing.smooth(data, smooth_wl, smooth_po, smooth_mode) if var_elim.get() == 1: new_smoothed_data, data = data_preprocessing.eliminate_abnormal_value(smoothed_data, data, elim_ws, elim_thre, var_base.get()) else: data = smoothed_data num = var_mean.get() + var_std.get() + var_min.get() + var_max.get() + var_rms.get() # extract features from x y z axis respectively for col in range(3): # number of feature column is determined by selected features feature = np.empty([int(len(data[:, col])/seg_size), num]) new_feature = [] for i in range(int(len(data[:, col])/seg_size)): # window is one group of data whose size is seg_size window = data[i*seg_size:(i+1)*seg_size, col] # keep track of features k = 0 if var_mean.get(): feature[i, k] = feature_extraction.mean(window) k += 1; if var_std.get(): feature[i, k] = feature_extraction.std(window) k += 1; if var_min.get(): feature[i, k] = feature_extraction.getmin(window) k += 1; if var_max.get(): feature[i, k] = feature_extraction.getmax(window) k += 1; if var_rms.get(): feature[i, k] = feature_extraction.rms(window) k += 1; if var_energy.get(): energy_vector = feature_extraction.energy_for_each_freq_band(window, eng_odr, eng_bs) temp = np.append(feature[i, :], energy_vector) new_feature.append(temp) else: new_feature.append(feature[i, :]) # features on only one axis new_feature = np.array(new_feature) #print("new_feature: ", new_feature.shape) # save features of all axes to ex_feature if col == 0: ex_feature = new_feature else: ex_feature = np.append(ex_feature, new_feature, axis=1) # print("ex_feature: ", ex_feature.shape) num_features = ex_feature.shape[1] // 3 num_axis = var_accel_x.get() + var_accel_y.get() + var_accel_z.get() trn_feature = np.empty([ex_feature.shape[0], num_axis*num_features]) k = 0 if var_accel_x.get() == 1: trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, 0:num_features] k += 1 if var_accel_y.get() == 1: trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features:num_features*2] k += 1 if var_accel_z.get() == 1: trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features*2:num_features*3] k += 1; final_features.extend(trn_feature) for i in range(len(trn_feature)): labels.append(label) pb['value'] = 10 + (idx+1)/num_rows * 80 trn.update_idletasks() time.sleep(0.5) final_features = np.array(final_features) labels = np.array(labels) #print(final_features.shape) #print(labels.shape) #np.savetxt('fea', final_features, delimiter=',') #print(labels) # f = open(directory + '/' + txtName, "w+") # f.write("param value\n") if res_text.get('1.0', END) != []: res_text.delete('1.0', END) if model == "Random Forest": acc_trn, acc_tst, acc_oob = train.RandomForest(final_features, labels, trn_ratio, save_model) res_text.insert(END, "Training accuracy: " + str(acc_trn) + '\n') res_text.insert(END, '\n' + "Testing accuracy: " + str(acc_tst) + '\n') res_text.insert(END, '\n' + "Out of bag accuracy: " + str(acc_oob) + '\n') if model == "SVM": acc_trn, acc_tst = train.SVM(final_features, labels, trn_ratio, save_model) res_text.insert(END, "Training accuracy: " + str(acc_trn) + '\n') res_text.insert(END, '\n' + "Test accuracy: " + str(acc_tst) + '\n') pb['value'] = 100 trn.update_idletasks() time.sleep(0.5)
def extractAndSave(): file_idx = trn_files.curselection() filename = "" if file_idx == (): messagebox.showerror("Error", "Please select the training files!") return else: filename = trn_files.get(file_idx) if var_filter.get() == 1: if en_order.get() != "" and en_fc.get() != "" and en_type.get() != "" and en_fs.get() != "": filter_order = int(en_order.get()) filter_fc = en_fc.get() filter_type = en_type.get() filter_fs = int(en_fs.get()) if filter_type == "bandpass" or filter_type == "bandstop": if filter_fc.split("[")[0] != "": messagebox.showerror("Error", "The form of fc should be like \'[fc1, fc2]\'!") return fc = filter_fc.split("[")[1].split("]")[0].split(",") filter_fc = [int(fc[0]), int(fc[1])] else: filter_fc = int(filter_fc) else: messagebox.showerror("Error", "Please set all the parameters of Filter!") return if var_smooth.get() == 1: if en_wl.get() != "" and en_po.get() != "" and en_mode.get() != "": smooth_wl = int(en_wl.get()) smooth_po = int(en_po.get()) smooth_mode = en_mode.get() if smooth_wl % 2 == 0: messagebox.showerror("Error", "The window length should be odd!") return else: messagebox.showerror("Error", "Please set all the parameters of Smoothing!") return if var_elim.get() == 1: if en_thre.get() != "" and en_win.get() != "": elim_thre = int(en_thre.get()) elim_ws = int(en_win.get()) else: messagebox.showerror("Error", "Please set all the parameters of Eliminate Abnormal Data!") return if var_energy.get() == 1: if en_bs.get() != "" and en_odr.get() != "": eng_bs = int(en_bs.get()) eng_odr = int(en_odr.get()) else: messagebox.showerror("Error", "Please set all the parameters of Energy!") return if en_ws.get() != "": seg_size = int(en_ws.get()) else: messagebox.showerror("Error", "Please set the segment size!") return if var_accel_x.get() == 0 and var_accel_y.get() == 0 and var_accel_z.get() == 0: messagebox.showerror("Error", "Please select at least one axis!") return if (var_base.get() == 1 and var_accel_x.get() == 0) or (var_base.get() == 2 and var_accel_y.get() == 0) or (var_base.get() == 3 and var_accel_z.get() == 0): messagebox.showerror("Error", "Please select the axis that is select in Axis Selection!") return if var_mean.get() + var_std.get() + var_min.get() + var_max.get() + var_rms.get() + var_energy.get() == 0: messagebox.showerror("Error", "Please select at least one feature!") return save_features = filedialog.asksaveasfilename(initialdir = "/", title = "Save file", filetypes = (("numpy files","*.npy"), ("all files", "*.*"))) if save_features == "": return files = pd.read_csv(filename) final_features = [] labels = [] for idx, row in files.iterrows(): name = row['file'] dir = row['dir'] label = row['label'] header = row['header'] raw_data = pd.read_csv(dir + '\\' + '\\' + name, header=header, delimiter=';') ax = raw_data['ax'] ay = raw_data['ay'] az = raw_data['az'] data = np.array([ax, ay, az]).T if var_filter.get() == 1: data = data_preprocessing.filter(data, filter_order, filter_fc, filter_type, filter_fs) if var_smooth.get() == 1: smoothed_data = data_preprocessing.smooth(data, smooth_wl, smooth_po, smooth_mode) if var_elim.get() == 1: new_smoothed_data, data = data_preprocessing.eliminate_abnormal_value(smoothed_data, data, elim_ws, elim_thre, var_base.get()) else: data = smoothed_data num = var_mean.get() + var_std.get() + var_min.get() + var_max.get() + var_rms.get() for col in range(3): feature = np.empty([int(len(data[:, col])/seg_size), num]) new_feature = [] for i in range(int(len(data[:, col])/seg_size)): window = data[i*seg_size:(i+1)*seg_size, col] k = 0 if var_mean.get(): feature[i, k] = feature_extraction.mean(window) k += 1; if var_std.get(): feature[i, k] = feature_extraction.std(window) k += 1; if var_min.get(): feature[i, k] = feature_extraction.getmin(window) k += 1; if var_max.get(): feature[i, k] = feature_extraction.getmax(window) k += 1; if var_rms.get(): feature[i, k] = feature_extraction.rms(window) k += 1; if var_energy.get(): energy_vector = feature_extraction.energy_for_each_freq_band(window, eng_odr, eng_bs) temp = np.append(feature[i, :], energy_vector) new_feature.append(temp) else: new_feature.append(feature[i, :]) new_feature = np.array(new_feature) #print("new_feature: ", new_feature.shape) if col == 0: ex_feature = new_feature else: ex_feature = np.append(ex_feature, new_feature, axis=1) #print("ex_feature: ", ex_feature.shape) num_features = ex_feature.shape[1] // 3 num_axis = var_accel_x.get() + var_accel_y.get() + var_accel_z.get() trn_feature = np.empty([ex_feature.shape[0], num_axis*num_features]) k = 0 if var_accel_x.get() == 1: trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, 0:num_features] k += 1 if var_accel_y.get() == 1: trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features:num_features*2] k += 1 if var_accel_z.get() == 1: trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features*2:num_features*3] k += 1; final_features.extend(trn_feature) for i in range(len(trn_feature)): labels.append(label) final_features = np.array(final_features) labels = np.array(labels) save_labels = save_features save_features = save_features.split(".")[0] + "_features.npy" save_labels = save_labels.split(".")[0] + "_labels.npy" np.save(save_features, final_features) np.save(save_labels, labels) messagebox.showinfo("Congratulations", "Features and labels are successfully saved!")
def start_predict_online(data_online): global online_window global online_window_size global flag if model_text2.get("1.0", END) == []: messagebox.showerror("Error", "Please select test model!") return else: online_model = model_text2.get("1.0", END) online_model = online_model.split("\n")[0] if res_text2.get("1.0", END) == []: res_text2.delete("1.0", END) test_config = pd.read_csv(online_model.split(".")[0] + ".txt", sep=" ") test_config.columns = ['param', 'value'] test_config = pd.DataFrame(data=[test_config['value'].values], columns=test_config['param'].values) if test_config['filter'].values[0] == '1': filter_order = int(test_config['order'].values[0]) filter_fc = test_config['fc'].values[0] filter_type = test_config['type'].values[0] filter_fs = int(test_config['fs'].values[0]) if filter_type == "bandpass" or filter_type == "bandstop": fc = filter_fc.split("[")[1].split("]")[0].split(",") filter_fc = [int(fc[0]), int(fc[1])] else: filter_fc = int(filter_fc) if test_config['smooth'].values[0] == '1': smooth_wl = int(test_config['windowlength'].values[0]) smooth_po = int(test_config['polyorder'].values[0]) smooth_mode = test_config['mode'].values[0] if test_config['eliminate'].values[0] == '1': elim_thre = int(test_config['threshold'].values[0]) elim_ws = int(test_config['windowsize'].values[0]) elim_base = int(test_config['baseon'].values[0]) if test_config['energy'].values[0] == '1': eng_bs = int(test_config['bandsize'].values[0]) eng_odr = int(test_config['odr'].values[0]) seg_size = int(test_config['segsize'].values[0]) #print(flag) if flag == False: online_window = [] online_window_size = seg_size * 1.5 flag = True if online_window_size == 0: # test_config = pd.read_csv(online_model.split(".")[0] + ".txt", sep=" ") # test_config.columns = ['param', 'value'] # test_config = pd.DataFrame(data=[test_config['value'].values], columns=test_config['param'].values) # if test_config['filter'].values[0] == '1': # filter_order = int(test_config['order'].values[0]) # filter_fc = test_config['fc'].values[0] # filter_type = test_config['type'].values[0] # filter_fs = int(test_config['fs'].values[0]) # if filter_type == "bandpass" or filter_type == "bandstop": # fc = filter_fc.split("[")[1].split("]")[0].split(",") # filter_fc = [int(fc[0]), int(fc[1])] # else: # filter_fc = int(filter_fc) # if test_config['smooth'].values[0] == '1': # smooth_wl = int(test_config['windowlength'].values[0]) # smooth_po = int(test_config['polyorder'].values[0]) # smooth_mode = test_config['mode'].values[0] # if test_config['eliminate'].values[0] == '1': # elim_thre = int(test_config['threshold'].values[0]) # elim_ws = int(test_config['windowsize'].values[0]) # elim_base = int(test_config['baseon'].values[0]) # if test_config['energy'].values[0] == '1': # eng_bs = int(test_config['bandsize'].values[0]) # eng_odr = int(test_config['odr'].values[0]) # seg_size = int(test_config['segsize'].values[0]) data = np.array(online_window) #print(data) #final_features = [] if test_config['filter'].values[0] == '1': data = data_preprocessing.filter(data, filter_order, filter_fc, filter_type, filter_fs) if test_config['smooth'].values[0] == '1': smoothed_data = data_preprocessing.smooth(data, smooth_wl, smooth_po, smooth_mode) if test_config['eliminate'].values[0] == '1': new_smoothed_data, data = data_preprocessing.eliminate_abnormal_value(smoothed_data, data, elim_ws, elim_thre, elim_base) if data.shape[0] >= seg_size: num = int(test_config['mean'].values[0]) + int(test_config['std'].values[0]) + int(test_config['min'].values[0]) + int(test_config['max'].values[0]) + int(test_config['rms'].values[0]) for col in range(3): feature = np.empty([int(len(data[:, col])/seg_size), num]) new_feature = [] for i in range(int(len(data[:, col])/seg_size)): window = data[i*seg_size:(i+1)*seg_size, col] k = 0 if int(test_config['mean'].values[0]): feature[i, k] = feature_extraction.mean(window) k += 1; if int(test_config['std'].values[0]): feature[i, k] = feature_extraction.std(window) k += 1; if int(test_config['min'].values[0]): feature[i, k] = feature_extraction.getmin(window) k += 1; if int(test_config['max'].values[0]): feature[i, k] = feature_extraction.getmax(window) k += 1; if int(test_config['rms'].values[0]): feature[i, k] = feature_extraction.rms(window) k += 1; if int(test_config['energy'].values[0]): energy_vector = feature_extraction.energy_for_each_freq_band(window, eng_odr, eng_bs) temp = np.append(feature[i, :], energy_vector) new_feature.append(temp) else: new_feature.append(feature[i, :]) new_feature = np.array(new_feature) #print("new_feature: ", new_feature.shape) if col == 0: ex_feature = new_feature else: ex_feature = np.append(ex_feature, new_feature, axis=1) #print("ex_feature: ", ex_feature.shape) num_features = ex_feature.shape[1] // 3 num_axis = int(test_config['X'].values[0]) +int(test_config['Y'].values[0]) + int(test_config['Z'].values[0]) trn_feature = np.empty([ex_feature.shape[0], num_axis*num_features]) k = 0 if int(test_config['X'].values[0]) == 1: trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, 0:num_features] k += 1 if int(test_config['Y'].values[0]) == 1: trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features:num_features*2] k += 1 if int(test_config['Z'].values[0]) == 1: trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features*2:num_features*3] k += 1; test_model = pickle.load(open(online_model, 'rb')) predict_output = test_model.predict(trn_feature) print(predict_output[0]) #res_text2.insert(END, predict_output[0]) #online_window = [] #online_window_size = 200 flag = False else: online_window.append(data_online) online_window_size -= 1
noverlap=frame_length - frame_lap, nfft=8192, boundary=None, padded=False) pic = None feature1 = fe.zero_crossing_rate(frames, pic=pic) feature2 = fe.energy(frames, pic=pic) feature3 = fe.entropy_of_energy(frames, pic=pic) feature4, feature41 = fe.spectral_centroid_spread(stft, fs, pic=pic) feature5 = fe.spectral_entropy(stft, pic=pic) feature6 = fe.spectral_flux(stft, pic=pic) feature7 = fe.spectral_rolloff(stft, 0.85, fs, pic=pic) feature8 = fe.bandwidth(stft, f, pic=pic) feature9 = fe.mfccs(X=stft, fs=fs, nfft=8192, n_mels=128, n_mfcc=13, pic=pic) feature10 = fe.rms(stft, pic=pic) feature11 = fe.stfrft(frames, p=0.95, pic=pic) tmp = fe.stfrft(frames, p=0.95) feature12 = fe.frft_MFCC(S=tmp, fs=fs, n_mfcc=13, n_mels=128, pic=pic) feature19 = fe.delta_features(feature9, order=1) feature20 = fe.delta_features(feature9, order=2) plt.figure() ax1 = plt.subplot(411) plt.plot(data) ax1.set_ylabel('original signal') ax2 = plt.subplot(412) plt.plot(feature1[0, :]) # ax2.set_xlabel('frame time') ax2.set_ylabel('zero crossing rate') ax3 = plt.subplot(413)