Пример #1
0
def reload_and_feature(picall, feature_type, average, nmel, order_frft, nmfcc,
                       saveprojectpath, savedata, savepic, savetestdata,
                       savepreprocess, savefeature, path, downsample_rate,
                       frame_time, frame_length, frame_overlap, test_rate):
    '''
    fe.stft,                           # 0
    fe.zero_crossing_rate,             # 1
    fe.energy,                         # 2
    fe.entropy_of_energy,              # 3
    fe.spectral_centroid_spread,       # 4
    fe.spectral_entropy,               # 5
    fe.spectral_flux,                  # 6
    fe.spectral_rolloff,               # 7
    fe.bandwidth,                      # 8
    fe.mfccs,                          # 9
    fe.rms                             # 10
    fe.stfrft                          # 11
    fe.frft_mfcc                       # 12

    '''
    labelname = os.listdir(path)  # 获取该数据集路径下的子文件名
    if not os.path.exists(savefeature):
        os.mkdir(savefeature)  # 创建保存特征结果的文件
    for i in range(len(labelname)):
        if not os.path.exists(savefeature + '\\' + labelname[i]):
            os.mkdir(savefeature + '\\' + labelname[i])

    datafile = open(savepreprocess, encoding='utf-8')  # 读取预处理结果
    csv_reader = csv.reader(datafile)  # 以这种方式读取文件得到的结果是一个迭代器

    feature_set = []  # 当使用统计量作为特征时,将所有样本的特征缓存入该变量以进行归一化
    for row in csv_reader:  # row中的元素是字符类型
        time_series = np.array(row[2:]).astype(
            'float32')  # row的前两个元素分别是标签和对应文件次序
        #######################################################################
        frames = preprocessing.frame(time_series, frame_length,
                                     frame_overlap)  # 分帧
        f, t, stft = fe.stft(time_series,
                             pic=None,
                             fs=downsample_rate,
                             nperseg=frame_length,
                             noverlap=frame_length - frame_overlap,
                             nfft=8192,
                             boundary=None,
                             padded=False)
        # if stft.shape[1] != frames.shape[1]:                                 # 防止stft的时间个数和帧的个数不一样
        #     dim = min(stft.shape[1], frames.shape[1])
        #     stft = stft[:, 0:dim]
        #     frames = frames[:, 0:dim]
        # Mel = lib.feature.melspectrogram(S=np.abs(stft), sr=downsample_rate, n_fft=2*(stft.shape[0]-1), n_mels=512)
        feature_list = []  # 用于存放各种类型的特征,每个帧对应一个特征向量,其元素分别是每种类型的特征
        if picall:  # 用于绘图控制
            pic = savepic + '\\' + row[0] + '_' + row[1]
        else:
            pic = None

        for i in feature_type:
            if i == 0:
                feature0 = np.abs(stft)
                feature_list.append(feature0)
            elif i == 1:
                feature1 = fe.zero_crossing_rate(frames, pic=pic)
                feature_list.append(feature1)
            elif i == 2:
                feature2 = fe.energy(frames, pic=pic)
                feature_list.append(feature2)
            elif i == 3:
                feature3 = fe.entropy_of_energy(frames, pic=pic)
                feature_list.append(feature3)
            elif i == 4:
                feature4, feature41 = fe.spectral_centroid_spread(
                    stft, downsample_rate, pic=pic)
                feature_list.append(feature4)
                feature_list.append(feature41)
            elif i == 5:
                feature5 = fe.spectral_entropy(stft, pic=pic)
                feature_list.append(feature5)
            elif i == 6:
                feature6 = fe.spectral_flux(stft, pic=pic)
                feature_list.append(feature6)
            elif i == 7:
                feature7 = fe.spectral_rolloff(stft,
                                               0.85,
                                               downsample_rate,
                                               pic=pic)
                feature_list.append(feature7)
            elif i == 8:
                feature8 = fe.bandwidth(stft, f, pic=pic)
                feature_list.append(feature8)
            elif i == 9:
                feature9 = fe.mfccs(
                    X=stft,
                    fs=downsample_rate,
                    # nfft=2*(stft.shape[0]-1),
                    nfft=8192,
                    n_mels=nmel,
                    n_mfcc=nmfcc,
                    pic=pic)
                feature_list.append(feature9)
            elif i == 10:
                feature10 = fe.rms(stft, pic=pic)
                feature_list.append(feature10)
            elif i == 11:
                feature11 = fe.stfrft(frames,
                                      p=order_frft[int(row[0])],
                                      pic=pic)
                feature_list.append(feature11)
            elif i == 12:
                tmp = fe.stfrft(frames, p=order_frft[int(row[0])])
                feature12 = fe.frft_MFCC(S=tmp,
                                         fs=downsample_rate,
                                         n_mfcc=nmfcc,
                                         n_mels=nmel,
                                         pic=pic)
                feature_list.append(feature12)
            elif i == 13:
                feature13, feature13_ = fe.fundalmental_freq(
                    frames=frames, fs=downsample_rate, pic=pic)
                feature_list.append(feature13)
            elif i == 14:
                feature14 = fe.chroma_stft(S=stft,
                                           n_chroma=12,
                                           A440=440.0,
                                           ctroct=5.0,
                                           octwidth=2,
                                           base_c=True,
                                           norm=2)
                feature_list.append(feature14)
            elif i == 15:
                feature15 = fe.log_attack_time(x=time_series,
                                               lower_ratio=0.02,
                                               upper_ratio=0.99,
                                               fs=downsample_rate,
                                               n=frames.shape[1])
                feature_list.append(feature15)
            elif i == 16:
                feature16 = fe.temoporal_centroid(S=stft,
                                                  hop_length=frame_overlap,
                                                  fs=downsample_rate)
                feature_list.append(feature16)
            elif i == 17:
                # harm_freq, harm_mag = fe.harmonics(nfft=8192, nht=0.15, f=f, S=stft, fs=downsample_rate, fmin=50, fmax=500, threshold=0.2)
                # hsc = fe.harmonic_spectral_centroid(harm_freq, harm_mag)
                # hsd = fe.harmonic_spectral_deviation(harm_mag)
                # hss = fe.harmonic_spectral_spread(hsc, harm_freq, harm_mag)
                # hsv = fe.harmonic_spectral_variation(harm_mag)
                # feature17 = np.concatenate([hsc, hsd, hss, hsv], axis=0)
                # feature_list.append(feature17)
                harm_freq, harm_mag = timbral.harmonics(frames=frames,
                                                        fs=downsample_rate,
                                                        S=stft,
                                                        f=f,
                                                        nfft=8192,
                                                        fmin=50,
                                                        fmax=500,
                                                        nht=0.15)
                hsc = timbral.harmonic_spectral_centroid(harm_freq, harm_mag)
                hsd = timbral.harmonic_spectral_deviation(harm_mag)
                hss = timbral.harmonic_spectral_spread(hsc, harm_freq,
                                                       harm_mag)
                hsv = timbral.harmonic_spectral_variation(harm_mag)
                feature17 = np.concatenate([hsc, hsd, hss, hsv], axis=0)
                feature_list.append(feature17)
            elif i == 18:
                feature18 = fe.pitches_mag_CDSV(f=f,
                                                S=stft,
                                                fs=downsample_rate,
                                                fmin=50,
                                                fmax=downsample_rate / 2,
                                                threshold=0.2)
                feature_list.append(feature18)
            elif i == 19:
                feature19 = fe.delta_features(feature9, order=1)
                feature_list.append(feature19)
            elif i == 20:
                feature20 = fe.delta_features(feature9, order=2)
                feature_list.append(feature20)

        features = np.concatenate([j for j in feature_list],
                                  axis=0)  # 我很欣赏这一句代码,将各种特征拼在一起
        long = list(range(features.shape[1]))  # 删除含有nan的帧
        for t in long[::-1]:
            if np.isnan(features[:, t]).any():
                features = np.delete(features, t, 1)
        if average:  # 使用统计量作为特征
            mean = np.mean(features, axis=1).reshape(
                1, features.shape[0])  # 原来的特征向量是列向量,这里转成行向量
            var = np.var(features, axis=1).reshape(1, features.shape[0])
            # std = np.std(features, axis=1).reshape(1, features.shape[0])
            # ske = np.zeros((1, features.shape[0]))
            # kur = np.zeros((1, features.shape[0]))
            # for n in range(features.shape[0]):
            #     ske[0, i] = sts.skewness(features[i, :])
            #     kur[0, i] = sts.kurtosis(features[i, :])
            features = np.concatenate([
                mean, var,
                np.array([int(row[0]), int(row[1])]).reshape(1, 2)
            ],
                                      axis=1)  # 使用统计平均代替每个帧的特征
            feature_set.append(features)
        else:
            scale = StandardScaler().fit(features)
            features = scale.transform(features)  # 进行归一化
            csv_path = savefeature + '\\' + labelname[int(
                row[0])] + '\\' + row[0] + '_' + row[1] + '.csv'
            with open(csv_path, 'w', encoding='utf-8', newline='') as csvfile:
                csv_writer = csv.writer(csvfile)
                buffer = np.concatenate([
                    features.T,
                    int(row[0]) * np.ones((features.shape[1], 1)),
                    int(row[1]) * np.ones((features.shape[1], 1))
                ],
                                        axis=1)
                csv_writer.writerows(buffer)
        print('featuring:', row[0], row[1])
    datafile.close()  # 关闭文件,避免不必要的错误
    if average:  # 使用统计量作为特征
        features = np.concatenate([k for k in feature_set],
                                  axis=0)  # 我很欣赏这一句代码    行表示样本数,列表示特征数
        tmp = features[:, -2:]  # 防止归一化的时候把标签也归一化
        features = features[:, 0:-2]
        scale = StandardScaler().fit(features)
        features = scale.transform(features)  # 进行归一化
        features = np.concatenate([features, tmp], axis=1)  # 把之前分开的特征和标签拼在一起
        for k in range(features.shape[0]):
            csv_path = savefeature + '\\' + labelname[int(features[k, -2])] + \
                       '\\' + str(int(features[k, -2])) + '_' + str(int(features[k, -1])) + '.csv'
            with open(csv_path, 'w', encoding='utf-8', newline='') as csvfile:
                csv_writer = csv.writer(csvfile)  # 每个音频文件只有一个特征向量,并存入一个csv文件
                csv_writer.writerow(features[k, :])  # 注意这里写入的是一行,要用writerow
Пример #2
0
def start_predict_offline():
	
	if file_text.get("1.0", END) == []:
		messagebox.showerror("Error", "Please select test file!")
		return
	else:
		test_file = file_text.get("1.0", END)
		test_file = test_file.split("\n")[0]

	if model_text.get("1.0", END) == []:
		messagebox.showerror("Error", "Please select test model!")
		return
	else:
		offline_model = model_text.get("1.0", END)
		offline_model = offline_model.split("\n")[0]

	test_config = pd.read_csv(offline_model.split(".")[0] + ".txt", sep=" ")
	test_config.columns = ['param', 'value']

	test_config = pd.DataFrame(data=[test_config['value'].values], columns=test_config['param'].values)

	if test_config['filter'].values[0] == '1':
		filter_order = int(test_config['order'].values[0])
		filter_fc = test_config['fc'].values[0]
		filter_type = test_config['type'].values[0]
		filter_fs = int(test_config['fs'].values[0])
		if filter_type == "bandpass" or filter_type == "bandstop":
			fc = filter_fc.split("[")[1].split("]")[0].split(",")
			filter_fc = [int(fc[0]), int(fc[1])]
		else:
			filter_fc = int(filter_fc)

	if test_config['smooth'].values[0] == '1':
		smooth_wl = int(test_config['windowlength'].values[0])
		smooth_po = int(test_config['polyorder'].values[0])
		smooth_mode = test_config['mode'].values[0]

	if test_config['eliminate'].values[0] == '1':
		elim_thre = int(test_config['threshold'].values[0])
		elim_ws = int(test_config['windowsize'].values[0])
		elim_base = int(test_config['baseon'].values[0])

	if test_config['energy'].values[0] == '1':
		eng_bs = int(test_config['bandsize'].values[0])
		eng_odr = int(test_config['odr'].values[0])

	seg_size = int(test_config['segsize'].values[0])

	files = pd.read_csv(test_file)

	final_features = []
	labels = []

	for idx, row in files.iterrows():
		name = row['file']
		dir = row['dir']
		label = row['label']
		header = row['header']
		raw_data = pd.read_csv(dir + '\\' + '\\' + name, header=header, delimiter=';')

		ax = raw_data['ax']
		ay = raw_data['ay']
		az = raw_data['az']

		data = np.array([ax, ay, az]).T

		if test_config['filter'].values[0] == '1':
			data = data_preprocessing.filter(data, filter_order, filter_fc, filter_type, filter_fs)

		if test_config['smooth'].values[0] == '1':
			smoothed_data = data_preprocessing.smooth(data, smooth_wl, smooth_po, smooth_mode)

			if test_config['eliminate'].values[0] == '1':
				new_smoothed_data, data = data_preprocessing.eliminate_abnormal_value(smoothed_data, data, elim_ws, elim_thre, elim_base)
			else:
				data = smoothed_data


		num = int(test_config['mean'].values[0]) + int(test_config['std'].values[0]) + int(test_config['min'].values[0]) + int(test_config['max'].values[0]) + int(test_config['rms'].values[0])


		for col in range(3):
			feature = np.empty([int(len(data[:, col])/seg_size), num])
			new_feature = []
			for i in range(int(len(data[:, col])/seg_size)):
				window = data[i*seg_size:(i+1)*seg_size, col]
				k = 0
				if int(test_config['mean'].values[0]):
					feature[i, k] = feature_extraction.mean(window)
					k += 1;
				if int(test_config['std'].values[0]):
					feature[i, k] = feature_extraction.std(window)
					k += 1;
				if int(test_config['min'].values[0]):
					feature[i, k] = feature_extraction.getmin(window)
					k += 1;
				if int(test_config['max'].values[0]):
					feature[i, k] = feature_extraction.getmax(window)
					k += 1;
				if int(test_config['rms'].values[0]):
					feature[i, k] = feature_extraction.rms(window)
					k += 1;
				if int(test_config['energy'].values[0]):
					energy_vector = feature_extraction.energy_for_each_freq_band(window, eng_odr, eng_bs)
					temp = np.append(feature[i, :], energy_vector)
					new_feature.append(temp)
				else:
					new_feature.append(feature[i, :])

			new_feature = np.array(new_feature)
			#print("new_feature: ", new_feature.shape)
			
			if col == 0:
				ex_feature = new_feature
			else:
				ex_feature = np.append(ex_feature, new_feature, axis=1)
			
			#print("ex_feature: ", ex_feature.shape)

		num_features = ex_feature.shape[1] // 3

		num_axis = int(test_config['X'].values[0]) +int(test_config['Y'].values[0]) + int(test_config['Z'].values[0])

		trn_feature = np.empty([ex_feature.shape[0], num_axis*num_features])

		k = 0

		if int(test_config['X'].values[0]) == 1:
			trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, 0:num_features]
			k += 1
		if int(test_config['Y'].values[0]) == 1:
			trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features:num_features*2]
			k += 1
		if int(test_config['Z'].values[0]) == 1:
			trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features*2:num_features*3]
			k += 1;

		final_features.extend(trn_feature)
		for i in range(len(trn_feature)):
			labels.append(label)

	final_features = np.array(final_features)
	labels = np.array(labels)

	test_model = pickle.load(open(offline_model, 'rb'))
	pred = test_model.predict(final_features)
	acc_tst = accuracy_score(labels, pred)

	lb_acc_tst = Label(offline, text=acc_tst, font=("Helvetica", "12", "bold italic"))
	lb_acc_tst.place(relx=0.6, rely=0.28)
Пример #3
0
def startTrain():
	model =  en_model.get()
	if model == "":
		messagebox.showerror("Error", "Please select the training model!")
		return

	trn_ratio = var_ratio.get()

	file_idx = trn_files.curselection()
	filename = ""
	if file_idx == ():
		messagebox.showerror("Error", "Please select the training files!")
		return
	else:
		filename = trn_files.get(file_idx)

# Detect if a filter is used and pass all filter parameter to the function
	if var_filter.get() == 1:
		if en_order.get() != "" and en_fc.get() != "" and en_type.get() != "" and en_fs.get() != "":
			filter_order = int(en_order.get())
			filter_fc = en_fc.get()
			filter_type = en_type.get()
			filter_fs = int(en_fs.get())
			if filter_type == "bandpass" or filter_type == "bandstop":
				if filter_fc.split("[")[0] != "":
					messagebox.showerror("Error", "The form of fc should be like \'[fc1, fc2]\'!")
					return

				fc = filter_fc.split("[")[1].split("]")[0].split(",")
				filter_fc = [int(fc[0]), int(fc[1])]
			else:
				filter_fc = int(filter_fc)

		else:
			messagebox.showerror("Error", "Please set all the parameters of Filter!")
			return

# Detect if smoothing is used and pass all filter parameter to the function
	if var_smooth.get() == 1:
		if en_wl.get() != "" and en_po.get() != "" and en_mode.get() != "":
			smooth_wl = int(en_wl.get())
			smooth_po = int(en_po.get())
			smooth_mode = en_mode.get()

			if smooth_wl % 2 == 0:
				messagebox.showerror("Error", "The window length should be odd!")
				return

		else:
			messagebox.showerror("Error", "Please set all the parameters of Smoothing!")
			return

	if var_elim.get() == 1:
		if en_thre.get() != "" and en_win.get() != "":
			elim_thre = int(en_thre.get())
			elim_ws = int(en_win.get())
		else:
			messagebox.showerror("Error", "Please set all the parameters of Eliminate Abnormal Data!")
			return

	if var_energy.get() == 1:
		if en_bs.get() != "" and en_odr.get() != "":
			eng_bs = int(en_bs.get())
			eng_odr = int(en_odr.get())
		else:
			messagebox.showerror("Error", "Please set all the parameters of Energy!")
			return

	if en_ws.get() != "":
		seg_size = int(en_ws.get())
	else:
		messagebox.showerror("Error", "Please set the segment size!")
		return

	if var_accel_x.get() == 0 and var_accel_y.get() == 0 and var_accel_z.get() == 0:
		messagebox.showerror("Error", "Please select at least one axis!")
		return

	if (var_base.get() == 1 and var_accel_x.get() == 0) or (var_base.get() == 2 and var_accel_y.get() == 0) or (var_base.get() == 3 and var_accel_z.get() == 0):
		messagebox.showerror("Error", "Please select the axis that is select in Axis Selection!")
		return

	if var_mean.get() + var_std.get() + var_min.get() + var_max.get() + var_rms.get() + var_energy.get() == 0:
		messagebox.showerror("Error", "Please select at least one feature!")
		return


	save_model = filedialog.asksaveasfilename(initialdir = "/", title = "Save Model", filetypes = (("sav files","*.sav"), ("all files", "*.*")))
	if save_model == "":
		return
	if len(save_model.split(".")) == 1:
		save_model = save_model + '.sav'

	### write model configuration
	parts = save_model.split('/')
	directory = '/'.join(parts[0:len(parts)-1])
	txtName = parts[len(parts)-1].split('.')[0] + '.txt'

	pb['value'] = 10
	trn.update_idletasks() 
	time.sleep(0.5)

	f = open(directory + '/' + txtName, "w+")
	f.write("param value\n")
	if var_filter.get() == 1:
		f.write("filter 1\n")
		f.write("order %d\n" %filter_order)
		f.write("fc %d\n" %filter_fc)
		f.write("type " + filter_type + "\n")
		f.write("fs %d\n" %filter_fs)
	else:
		f.write("filter 0\n")

	if var_smooth.get() == 1:
		f.write("smooth 1\n")
		f.write("windowlength %d\n" %smooth_wl)
		f.write("polyorder %d\n" %smooth_po)
		f.write("mode " + smooth_mode + "\n")
	else:
		f.write("smooth 0\n")

	if var_elim.get() == 1:
		f.write("eliminate 1\n")
		f.write("threshold %d\n" %elim_thre)
		f.write("windowsize %d\n" %elim_ws)
		f.write("baseon %d\n" %var_base.get())
	else:
		f.write("eliminate 0\n")

	f.write("X %d\n" %var_accel_x.get())
	f.write("Y %d\n" %var_accel_y.get())
	f.write("Z %d\n" %var_accel_z.get())

	f.write("mean %d\n" %var_mean.get())
	f.write("std %d\n" %var_std.get())
	f.write("min %d\n" %var_min.get())
	f.write("max %d\n" %var_max.get())
	f.write("rms %d\n" %var_rms.get())
	f.write("energy %d\n" %var_energy.get())

	if var_energy.get() == 1:
		f.write("bandsize %d\n" %eng_bs)
		f.write("odr %d\n" %eng_odr)

	f.write("segsize %d\n" %seg_size)

	f.close()


	files = pd.read_csv(filename)

	final_features = []
	labels = []

	num_rows = files.shape[0]

	for idx, row in files.iterrows():
		name = row['file']
		dir = row['dir']
		label = row['label']
		header = row['header']
		raw_data = pd.read_csv(dir + '\\' + '\\' + name, header=header, delimiter=';')

		ax = raw_data['ax']
		ay = raw_data['ay']
		az = raw_data['az']

		data = np.array([ax, ay, az]).T

		if var_filter.get() == 1:
			data = data_preprocessing.filter(data, filter_order, filter_fc, filter_type, filter_fs)

		if var_smooth.get() == 1:
			smoothed_data = data_preprocessing.smooth(data, smooth_wl, smooth_po, smooth_mode)

			if var_elim.get() == 1:
				new_smoothed_data, data = data_preprocessing.eliminate_abnormal_value(smoothed_data, data, elim_ws, elim_thre, var_base.get())
			else:
				data = smoothed_data


		num = var_mean.get() + var_std.get() + var_min.get() + var_max.get() + var_rms.get()

# extract features from x y z axis respectively
		for col in range(3):
			# number of feature column is determined by selected features
			feature = np.empty([int(len(data[:, col])/seg_size), num])
			new_feature = []
			for i in range(int(len(data[:, col])/seg_size)):
				# window is one group of data whose size is seg_size
				window = data[i*seg_size:(i+1)*seg_size, col]
				# keep track of features
				k = 0
				if var_mean.get():
					feature[i, k] = feature_extraction.mean(window)
					k += 1;
				if var_std.get():
					feature[i, k] = feature_extraction.std(window)
					k += 1;
				if var_min.get():
					feature[i, k] = feature_extraction.getmin(window)
					k += 1;
				if var_max.get():
					feature[i, k] = feature_extraction.getmax(window)
					k += 1;
				if var_rms.get():
					feature[i, k] = feature_extraction.rms(window)
					k += 1;
				if var_energy.get():
					energy_vector = feature_extraction.energy_for_each_freq_band(window, eng_odr, eng_bs)
					temp = np.append(feature[i, :], energy_vector)
					new_feature.append(temp)
				else:
					new_feature.append(feature[i, :])
            # features on only one axis
			new_feature = np.array(new_feature)
			#print("new_feature: ", new_feature.shape)
			# save features of all axes to ex_feature
			if col == 0:
				ex_feature = new_feature
			else:
				ex_feature = np.append(ex_feature, new_feature, axis=1)
			
			# print("ex_feature: ", ex_feature.shape)

		num_features = ex_feature.shape[1] // 3

		num_axis = var_accel_x.get() + var_accel_y.get() + var_accel_z.get()

		trn_feature = np.empty([ex_feature.shape[0], num_axis*num_features])

		k = 0

		if var_accel_x.get() == 1:
			trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, 0:num_features]
			k += 1
		if var_accel_y.get() == 1:
			trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features:num_features*2]
			k += 1
		if var_accel_z.get() == 1:
			trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features*2:num_features*3]
			k += 1;

		final_features.extend(trn_feature)
		for i in range(len(trn_feature)):
			labels.append(label)

		pb['value'] = 10 + (idx+1)/num_rows * 80
		trn.update_idletasks() 
		time.sleep(0.5)

	final_features = np.array(final_features)
	labels = np.array(labels)

	#print(final_features.shape)
	#print(labels.shape)
	#np.savetxt('fea', final_features, delimiter=',')
	#print(labels)
	# f = open(directory + '/' + txtName, "w+")
	# f.write("param value\n")

	if res_text.get('1.0', END) != []:
		res_text.delete('1.0', END)

	if model == "Random Forest":
		acc_trn, acc_tst, acc_oob = train.RandomForest(final_features, labels, trn_ratio, save_model)
		res_text.insert(END, "Training accuracy: " + str(acc_trn) + '\n')
		res_text.insert(END, '\n' + "Testing accuracy: " + str(acc_tst) + '\n')
		res_text.insert(END, '\n' + "Out of bag accuracy: " + str(acc_oob) + '\n')

	if model == "SVM":
		acc_trn, acc_tst = train.SVM(final_features, labels, trn_ratio, save_model)
		res_text.insert(END, "Training accuracy: " + str(acc_trn) + '\n')
		res_text.insert(END, '\n' + "Test accuracy: " + str(acc_tst) + '\n')

	pb['value'] = 100
	trn.update_idletasks() 
	time.sleep(0.5)
Пример #4
0
def extractAndSave():
	file_idx = trn_files.curselection()
	filename = ""
	if file_idx == ():
		messagebox.showerror("Error", "Please select the training files!")
		return
	else:
		filename = trn_files.get(file_idx)


	if var_filter.get() == 1:
		if en_order.get() != "" and en_fc.get() != "" and en_type.get() != "" and en_fs.get() != "":
			filter_order = int(en_order.get())
			filter_fc = en_fc.get()
			filter_type = en_type.get()
			filter_fs = int(en_fs.get())
			if filter_type == "bandpass" or filter_type == "bandstop":
				if filter_fc.split("[")[0] != "":
					messagebox.showerror("Error", "The form of fc should be like \'[fc1, fc2]\'!")
					return

				fc = filter_fc.split("[")[1].split("]")[0].split(",")
				filter_fc = [int(fc[0]), int(fc[1])]
			else:
				filter_fc = int(filter_fc)

		else:
			messagebox.showerror("Error", "Please set all the parameters of Filter!")
			return

	if var_smooth.get() == 1:
		if en_wl.get() != "" and en_po.get() != "" and en_mode.get() != "":
			smooth_wl = int(en_wl.get())
			smooth_po = int(en_po.get())
			smooth_mode = en_mode.get()

			if smooth_wl % 2 == 0:
				messagebox.showerror("Error", "The window length should be odd!")
				return


		else:
			messagebox.showerror("Error", "Please set all the parameters of Smoothing!")
			return

	if var_elim.get() == 1:
		if en_thre.get() != "" and en_win.get() != "":
			elim_thre = int(en_thre.get())
			elim_ws = int(en_win.get())
		else:
			messagebox.showerror("Error", "Please set all the parameters of Eliminate Abnormal Data!")
			return

	if var_energy.get() == 1:
		if en_bs.get() != "" and en_odr.get() != "":
			eng_bs = int(en_bs.get())
			eng_odr = int(en_odr.get())
		else:
			messagebox.showerror("Error", "Please set all the parameters of Energy!")
			return

	if en_ws.get() != "":
		seg_size = int(en_ws.get())
	else:
		messagebox.showerror("Error", "Please set the segment size!")
		return

	if var_accel_x.get() == 0 and var_accel_y.get() == 0 and var_accel_z.get() == 0:
		messagebox.showerror("Error", "Please select at least one axis!")
		return

	if (var_base.get() == 1 and var_accel_x.get() == 0) or (var_base.get() == 2 and var_accel_y.get() == 0) or (var_base.get() == 3 and var_accel_z.get() == 0):
		messagebox.showerror("Error", "Please select the axis that is select in Axis Selection!")
		return

	if var_mean.get() + var_std.get() + var_min.get() + var_max.get() + var_rms.get() + var_energy.get() == 0:
		messagebox.showerror("Error", "Please select at least one feature!")
		return

	save_features = filedialog.asksaveasfilename(initialdir = "/", title = "Save file", filetypes = (("numpy files","*.npy"), ("all files", "*.*")))
	if save_features == "":
		return


	files = pd.read_csv(filename)

	final_features = []
	labels = []

	for idx, row in files.iterrows():
		name = row['file']
		dir = row['dir']
		label = row['label']
		header = row['header']
		raw_data = pd.read_csv(dir + '\\' + '\\' + name, header=header, delimiter=';')

		ax = raw_data['ax']
		ay = raw_data['ay']
		az = raw_data['az']

		data = np.array([ax, ay, az]).T

		if var_filter.get() == 1:
			data = data_preprocessing.filter(data, filter_order, filter_fc, filter_type, filter_fs)

		if var_smooth.get() == 1:
			smoothed_data = data_preprocessing.smooth(data, smooth_wl, smooth_po, smooth_mode)

			if var_elim.get() == 1:
				new_smoothed_data, data = data_preprocessing.eliminate_abnormal_value(smoothed_data, data, elim_ws, elim_thre, var_base.get())
			else:
				data = smoothed_data


		num = var_mean.get() + var_std.get() + var_min.get() + var_max.get() + var_rms.get()


		for col in range(3):
			feature = np.empty([int(len(data[:, col])/seg_size), num])
			new_feature = []
			for i in range(int(len(data[:, col])/seg_size)):
				window = data[i*seg_size:(i+1)*seg_size, col]
				k = 0
				if var_mean.get():
					feature[i, k] = feature_extraction.mean(window)
					k += 1;
				if var_std.get():
					feature[i, k] = feature_extraction.std(window)
					k += 1;
				if var_min.get():
					feature[i, k] = feature_extraction.getmin(window)
					k += 1;
				if var_max.get():
					feature[i, k] = feature_extraction.getmax(window)
					k += 1;
				if var_rms.get():
					feature[i, k] = feature_extraction.rms(window)
					k += 1;
				if var_energy.get():
					energy_vector = feature_extraction.energy_for_each_freq_band(window, eng_odr, eng_bs)
					temp = np.append(feature[i, :], energy_vector)
					new_feature.append(temp)
				else:
					new_feature.append(feature[i, :])

			new_feature = np.array(new_feature)
			#print("new_feature: ", new_feature.shape)
			
			if col == 0:
				ex_feature = new_feature
			else:
				ex_feature = np.append(ex_feature, new_feature, axis=1)
			
			#print("ex_feature: ", ex_feature.shape)

		num_features = ex_feature.shape[1] // 3

		num_axis = var_accel_x.get() + var_accel_y.get() + var_accel_z.get()

		trn_feature = np.empty([ex_feature.shape[0], num_axis*num_features])

		k = 0

		if var_accel_x.get() == 1:
			trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, 0:num_features]
			k += 1
		if var_accel_y.get() == 1:
			trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features:num_features*2]
			k += 1
		if var_accel_z.get() == 1:
			trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features*2:num_features*3]
			k += 1;

		final_features.extend(trn_feature)
		for i in range(len(trn_feature)):
			labels.append(label)

	final_features = np.array(final_features)
	labels = np.array(labels)

	save_labels = save_features

	save_features = save_features.split(".")[0] + "_features.npy"
	save_labels = save_labels.split(".")[0] + "_labels.npy"

	np.save(save_features, final_features)
	np.save(save_labels, labels)

	messagebox.showinfo("Congratulations", "Features and labels are successfully saved!")
Пример #5
0
def start_predict_online(data_online):
	global online_window
	global online_window_size
	global flag

	if model_text2.get("1.0", END) == []:
		messagebox.showerror("Error", "Please select test model!")
		return
	else:
		online_model = model_text2.get("1.0", END)
		online_model = online_model.split("\n")[0]

	if res_text2.get("1.0", END) == []:
		res_text2.delete("1.0", END)



	test_config = pd.read_csv(online_model.split(".")[0] + ".txt", sep=" ")
	test_config.columns = ['param', 'value']

	test_config = pd.DataFrame(data=[test_config['value'].values], columns=test_config['param'].values)

	if test_config['filter'].values[0] == '1':
		filter_order = int(test_config['order'].values[0])
		filter_fc = test_config['fc'].values[0]
		filter_type = test_config['type'].values[0]
		filter_fs = int(test_config['fs'].values[0])
		if filter_type == "bandpass" or filter_type == "bandstop":
			fc = filter_fc.split("[")[1].split("]")[0].split(",")
			filter_fc = [int(fc[0]), int(fc[1])]
		else:
			filter_fc = int(filter_fc)

	if test_config['smooth'].values[0] == '1':
		smooth_wl = int(test_config['windowlength'].values[0])
		smooth_po = int(test_config['polyorder'].values[0])
		smooth_mode = test_config['mode'].values[0]

	if test_config['eliminate'].values[0] == '1':
		elim_thre = int(test_config['threshold'].values[0])
		elim_ws = int(test_config['windowsize'].values[0])
		elim_base = int(test_config['baseon'].values[0])

	if test_config['energy'].values[0] == '1':
		eng_bs = int(test_config['bandsize'].values[0])
		eng_odr = int(test_config['odr'].values[0])

	seg_size = int(test_config['segsize'].values[0])

	#print(flag)
	if flag == False:
		online_window = []
		online_window_size = seg_size * 1.5
		flag = True


	if online_window_size == 0:

		# test_config = pd.read_csv(online_model.split(".")[0] + ".txt", sep=" ")
		# test_config.columns = ['param', 'value']

		# test_config = pd.DataFrame(data=[test_config['value'].values], columns=test_config['param'].values)

		# if test_config['filter'].values[0] == '1':
		# 	filter_order = int(test_config['order'].values[0])
		# 	filter_fc = test_config['fc'].values[0]
		# 	filter_type = test_config['type'].values[0]
		# 	filter_fs = int(test_config['fs'].values[0])
		# 	if filter_type == "bandpass" or filter_type == "bandstop":
		# 		fc = filter_fc.split("[")[1].split("]")[0].split(",")
		# 		filter_fc = [int(fc[0]), int(fc[1])]
		# 	else:
		# 		filter_fc = int(filter_fc)

		# if test_config['smooth'].values[0] == '1':
		# 	smooth_wl = int(test_config['windowlength'].values[0])
		# 	smooth_po = int(test_config['polyorder'].values[0])
		# 	smooth_mode = test_config['mode'].values[0]

		# if test_config['eliminate'].values[0] == '1':
		# 	elim_thre = int(test_config['threshold'].values[0])
		# 	elim_ws = int(test_config['windowsize'].values[0])
		# 	elim_base = int(test_config['baseon'].values[0])

		# if test_config['energy'].values[0] == '1':
		# 	eng_bs = int(test_config['bandsize'].values[0])
		# 	eng_odr = int(test_config['odr'].values[0])

		# seg_size = int(test_config['segsize'].values[0])
		
		data = np.array(online_window)
		#print(data)
		#final_features = []
		if test_config['filter'].values[0] == '1':
			data = data_preprocessing.filter(data, filter_order, filter_fc, filter_type, filter_fs)

		if test_config['smooth'].values[0] == '1':
			smoothed_data = data_preprocessing.smooth(data, smooth_wl, smooth_po, smooth_mode)

			if test_config['eliminate'].values[0] == '1':
				new_smoothed_data, data = data_preprocessing.eliminate_abnormal_value(smoothed_data, data, elim_ws, elim_thre, elim_base)

		if data.shape[0] >= seg_size:
			
			num = int(test_config['mean'].values[0]) + int(test_config['std'].values[0]) + int(test_config['min'].values[0]) + int(test_config['max'].values[0]) + int(test_config['rms'].values[0])


			for col in range(3):
				feature = np.empty([int(len(data[:, col])/seg_size), num])
				new_feature = []
				for i in range(int(len(data[:, col])/seg_size)):
					window = data[i*seg_size:(i+1)*seg_size, col]
					k = 0
					if int(test_config['mean'].values[0]):
						feature[i, k] = feature_extraction.mean(window)
						k += 1;
					if int(test_config['std'].values[0]):
						feature[i, k] = feature_extraction.std(window)
						k += 1;
					if int(test_config['min'].values[0]):
						feature[i, k] = feature_extraction.getmin(window)
						k += 1;
					if int(test_config['max'].values[0]):
						feature[i, k] = feature_extraction.getmax(window)
						k += 1;
					if int(test_config['rms'].values[0]):
						feature[i, k] = feature_extraction.rms(window)
						k += 1;
					if int(test_config['energy'].values[0]):
						energy_vector = feature_extraction.energy_for_each_freq_band(window, eng_odr, eng_bs)
						temp = np.append(feature[i, :], energy_vector)
						new_feature.append(temp)
					else:
						new_feature.append(feature[i, :])

				new_feature = np.array(new_feature)
				#print("new_feature: ", new_feature.shape)
				
				if col == 0:
					ex_feature = new_feature
				else:
					ex_feature = np.append(ex_feature, new_feature, axis=1)
					
					#print("ex_feature: ", ex_feature.shape)

			num_features = ex_feature.shape[1] // 3

			num_axis = int(test_config['X'].values[0]) +int(test_config['Y'].values[0]) + int(test_config['Z'].values[0])

			trn_feature = np.empty([ex_feature.shape[0], num_axis*num_features])

			k = 0

			if int(test_config['X'].values[0]) == 1:
				trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, 0:num_features]
				k += 1
			if int(test_config['Y'].values[0]) == 1:
				trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features:num_features*2]
				k += 1
			if int(test_config['Z'].values[0]) == 1:
				trn_feature[:, k*num_features:(k+1)*num_features] = ex_feature[:, num_features*2:num_features*3]
				k += 1;

			test_model = pickle.load(open(online_model, 'rb'))
			predict_output = test_model.predict(trn_feature)
			print(predict_output[0])
			#res_text2.insert(END, predict_output[0])

		#online_window = []
		#online_window_size = 200
		flag = False
	else:
		online_window.append(data_online)
		online_window_size -= 1
Пример #6
0
                     noverlap=frame_length - frame_lap,
                     nfft=8192,
                     boundary=None,
                     padded=False)

pic = None
feature1 = fe.zero_crossing_rate(frames, pic=pic)
feature2 = fe.energy(frames, pic=pic)
feature3 = fe.entropy_of_energy(frames, pic=pic)
feature4, feature41 = fe.spectral_centroid_spread(stft, fs, pic=pic)
feature5 = fe.spectral_entropy(stft, pic=pic)
feature6 = fe.spectral_flux(stft, pic=pic)
feature7 = fe.spectral_rolloff(stft, 0.85, fs, pic=pic)
feature8 = fe.bandwidth(stft, f, pic=pic)
feature9 = fe.mfccs(X=stft, fs=fs, nfft=8192, n_mels=128, n_mfcc=13, pic=pic)
feature10 = fe.rms(stft, pic=pic)
feature11 = fe.stfrft(frames, p=0.95, pic=pic)
tmp = fe.stfrft(frames, p=0.95)
feature12 = fe.frft_MFCC(S=tmp, fs=fs, n_mfcc=13, n_mels=128, pic=pic)
feature19 = fe.delta_features(feature9, order=1)
feature20 = fe.delta_features(feature9, order=2)

plt.figure()
ax1 = plt.subplot(411)
plt.plot(data)
ax1.set_ylabel('original signal')
ax2 = plt.subplot(412)
plt.plot(feature1[0, :])
# ax2.set_xlabel('frame time')
ax2.set_ylabel('zero crossing rate')
ax3 = plt.subplot(413)