else: hdul = fits.open(args.data) data = pd.DataFrame(hdul[1].data) if args.signal_table is not None: signal_pts = pd.read_hdf(args.signal, args.signal_table) else: hdul = fits.open(args.signal) signal_pts = pd.DataFrame(hdul[1].data) signal_columns = args.signal_columns if signal_columns is None: signal_columns = signal_pts.columns signal_filter = PointFilter( signal_pts, filtered_columns=signal_columns, sigma_vec=np.repeat(0.2, len(signal_columns))) dsr = data weights = signal_filter.get_weights(dsr) dsr['weights'] = weights dsr.to_hdf('output.h5', 'photometry') if args.create_image is not None: out_img = cubeify( dsr, n=(int(args.nra), int(args.ndec)), columns=['RA', 'DEC'], target='weights')
else: hdul = fits.open(args.signal) signal_pts = pd.DataFrame(hdul[1].data) if args.noise_table is not None: noise_pts = pd.read_hdf(args.noise, args.noise_table) else: hdul = fits.open(args.noise) noise_pts = pd.DataFrame(hdul[1].data) signal_columns = args.signal_columns if signal_columns is None: signal_columns = signal_pts.columns signal_filter = PointFilter( signal_pts, filtered_columns=signal_columns, sigma_vec=np.repeat(0.2, len(signal_columns))) noise_filter = PointFilter( noise_pts, filtered_columns=signal_columns, sigma_vec=np.repeat(0.2, len(signal_columns))) print('fitering') dsr = data print('signal') signal_weights = signal_filter.get_weights(dsr) print('noise') noise_weights = noise_filter.get_weights(dsr) weights = signal_weights - noise_weights