H = HubbardHamiltonian(Hsp2) H.random_density() H.set_polarization(up=[6], dn=[28]) n_AFM = H.n f = open('FM-AFM.dat', 'w') mixer = sisl.mixing.PulayMixer(0.7, history=7) for u in np.arange(5, 0, -0.25): # We approach the solutions for different U values H.U = u mixer.clear() # AFM case first success = H.read_density( 'clar-goblet.nc') # Try reading, if we already have density on file if not success: H.n = n_AFM.copy() dn = H.converge(density.calc_n_insulator, tol=1e-10, mixer=mixer) eAFM = H.Etot H.write_density('clar-goblet.nc') n_AFM = H.n.copy() if u == 3.5: p = plot.SpinPolarization(H, colorbar=True, vmax=0.4, vmin=-0.4) p.savefig('spin_pol_U%i_AFM.pdf' % (H.U * 1000)) # Now FM case H.q[0] += 1 # change to two more up-electrons than down H.q[1] -= 1
# 3NN tight-binding model Hsp2 = sp2(mol, t1=2.7, t2=0.2, t3=.18) H = HubbardHamiltonian(Hsp2) # Plot the single-particle TB (U = 0.0) wavefunction (SO) for Type 1 H.U = 0.0 ev, evec = H.eigh(eigvals_only=False, spin=0) N = H.q[0] midgap = H.find_midgap() ev -= midgap f = 3800 v = evec[:, int(round(N)) - 1] j = np.argmax(abs(v)) wf = f * v**2 * np.sign(v[j]) * np.sign(v) p = plot.Wavefunction(H, wf) p.set_title(r'$E = %.3f$ eV' % (ev[int(round(N)) - 1])) p.savefig('Fig3_SOMO.pdf') # Plot MFH spin polarization for U = 3.5 eV H.U = 3.5 success = H.read_density( 'fig3_type1.nc') # Try reading, if we already have density on file if not success: H.set_polarization([23]) mixer = sisl.mixing.PulayMixer(0.7, history=7) H.converge(density.calc_n_insulator, mixer=mixer) H.write_density('fig3_type1.nc') p = plot.SpinPolarization(H, ext_geom=mol, vmax=0.20) p.savefig('fig3_pol.pdf')
# Test all plot functionalities of hubbard module # using a reference molecule (already converged) # Build sisl Geometry object molecule = sisl.get_sile('mol-ref/mol-ref.XV').read_geometry() molecule.sc.set_nsc([1, 1, 1]) molecule = molecule.move(-molecule.center(what='xyz')).rotate(220, [0, 0, 1]) H_mol = sp2(molecule) p = plot.BondHoppings(H_mol, annotate=False, off_diagonal_only=False, cmap_e='winter') p.legend() p.savefig('bondHoppings.pdf') H = HubbardHamiltonian(H_mol, U=3.5) H.read_density('mol-ref/density.nc') H.iterate(density.calc_n_insulator) p = plot.Charge(H, ext_geom=molecule, colorbar=True) p.savefig('chg.pdf') p = plot.ChargeDifference(H, ext_geom=molecule, colorbar=True) p.savefig('chgdiff.pdf') p = plot.SpinPolarization(H, ext_geom=molecule, colorbar=True, vmax=0.2) p.annotate() p.savefig('pol.pdf') H.H.shift(-H.find_midgap()) ev, evec = H.eigh(eigvals_only=False, spin=0)
# Build sisl Geometry object only for a subset of atoms molecule = sisl.get_sile('mol-ref/mol-ref.XV').read_geometry().sub([2,3,5]) molecule.sc.set_nsc([1, 1, 1]) # Build HubbardHamiltonian object Hsp2 = sp2(molecule) H = HubbardHamiltonian(Hsp2, U=3.5) # Generate simple density H.n = np.ones((2, H.sites))*0.5 print(f'1. Write and read densities under group {H.get_hash()} using the HubbardHamiltonian class\n') # Write density in file H.write_density('mol-ref/test.HU.nc', group=H.get_hash(), mode='w') # Read density using the HubbardHamiltonian class H.read_density('mol-ref/test.HU.nc', group=H.get_hash()) # Write another density in file under another group print(f'2. Write another densities under another group\n') H.n *= 2 H.write_density('mol-ref/test.HU.nc', group='group2', mode='a') print('3. Read density, U and kT using ncsile from all groups') fh = sisl.get_sile('mol-ref/test.HU.nc', mode='r') for g in fh.groups: print('group: ', g) print('n:', fh.read_density(group=g)) print('U:', fh.read_U(group=g)) print('kT:', fh.read_kT(group=g)) print('\n')
# 3NN tight-binding model Hsp2 = sp2(mol, t1=2.7, t2=0.2, t3=.18) H = HubbardHamiltonian(Hsp2) # Output file to collect the energy difference between # FM and AFM solutions f = open('FM-AFM.dat', 'w') mixer = sisl.mixing.PulayMixer(0.7, history=7) for u in np.linspace(0.0, 4.0, 5): # We approach the solutions from above, starting at U=4eV H.U = 4.0 - u # AFM case first success = H.read_density( mol_file + '.nc') # Try reading, if we already have density on file if not success: H.random_density() H.set_polarization([1, 6, 15]) # polarize lower zigzag edge mixer.clear() dn = H.converge(density.calc_n_insulator, mixer=mixer) eAFM = H.Etot H.write_density(mol_file + '.nc') p = plot.SpinPolarization(H, colorbar=True, vmax=0.4, vmin=-0.4) p.annotate() p.savefig('%s-spin-U%i.pdf' % (mol_file, H.U * 1000)) # Now FM case H.q[0] += 1 # change to two more up-electrons than down H.q[1] -= 1
from hubbard import HubbardHamiltonian, sp2, density, NEGF import sisl # Build sisl Geometry object molecule = sisl.get_sile('mol-ref/mol-ref.XV').read_geometry() molecule.sc.set_nsc([1, 1, 1]) print('1. Run one iteration with calc_n_insulator') Hsp2 = sp2(molecule) H = HubbardHamiltonian(Hsp2, U=3.5) H.random_density() dn = H.iterate(density.calc_n_insulator, mixer=sisl.mixing.LinearMixer()) print(' dn, Etot: ', dn, H.Etot, '\n') print('2. Run one iteration with data from ncfile') H.read_density('mol-ref/density.nc', group='3abe772') dn = H.iterate(density.calc_n_insulator, mixer=sisl.mixing.LinearMixer()) etot = 1 * H.Etot print(' dn, Etot: ', dn, etot, '\n') print('3. Run one iteration with calc_n') d = H.iterate(density.calc_n, mixer=sisl.mixing.LinearMixer()) e = H.Etot print(' dn, dEtot: ', d - dn, e - etot, '\n') # Write fdf-block print('\n4. Write initspin to fdf-block') H.write_initspin('test.fdf', mode='w') import random print('5. Run one iteration for spin-degenerate calculation')
# Set U and kT for the whole calculation U = 2.0 kT = 0.025 # Build zigzag GNR ZGNR = sisl.geom.zgnr(5) # and 3NN TB Hamiltonian H_elec = sp2(ZGNR, t1=2.7, t2=0.2, t3=0.18) mixer = sisl.mixing.PulayMixer(0.6, history=7) # Hubbard Hamiltonian of elecs MFH_elec = HubbardHamiltonian(H_elec, U=U, nkpt=[102, 1, 1], kT=kT) # Initial densities success = MFH_elec.read_density('elec_density.nc') if not success: # If no densities saved, start with random densities with maximized polarization at the edges MFH_elec.random_density() MFH_elec.set_polarization([0], dn=[9]) # Converge Electrode Hamiltonians dn = MFH_elec.converge(density.calc_n, mixer=mixer) # Write also densities for future calculations MFH_elec.write_density('elec_density.nc') # Plot spin polarization of electrodes p = plot.SpinPolarization(MFH_elec, colorbar=True) p.savefig('spin_elecs.pdf') # Find Fermi level of reservoirs and write to netcdf file Ef_elecs = MFH_elec.fermi_level(q=MFH_elec.q)
# 3NN tight-binding model Hsp2 = sp2(mol, t1=2.7, t2=0.2, t3=.18) H = HubbardHamiltonian(Hsp2) # Output file to collect the energy difference between # FM and AFM solutions f = open('FM-AFM.dat', 'w') mixer = sisl.mixing.PulayMixer(0.7, history=7) H.set_polarization([77], dn=[23]) for u in np.linspace(0.0, 1.4, 15): # We approach the solutions from above, starting at U=4eV H.U = 4.4 - u # AFM case first success = H.read_density( 'fig_S15.nc') # Try reading, if we already have density on file mixer.clear() dn = H.converge(density.calc_n_insulator, mixer=mixer, tol=1e-6) eAFM = H.Etot H.write_density('fig_S15.nc') # Now FM case H.q[0] += 1 # change to two more up-electrons than down H.q[1] -= 1 success = H.read_density( 'fig_S15.nc') # Try reading, if we already have density on file mixer.clear() dn = H.converge(density.calc_n_insulator, mixer=mixer, tol=1e-6) eFM = H.Etot