예제 #1
0
                              floor_method='min',
                              alpha_clean=.5)
pipeline = wf.smooth_2d(pipeline, in_channel='DAPI',
                        smoothing_px=.5)  # corresponds to a pixel of 1500 nm
print "2"

pipeline = wf.gamma_stabilize(pipeline,
                              in_channel='p53',
                              floor_method='min',
                              alpha_clean=.0)
pipeline = wf.smooth_2d(pipeline, in_channel='p53', smoothing_px=.5)
print "3"

pipeline = wf.robust_binarize(pipeline,
                              in_channel='DAPI',
                              out_channel=['nuclei'],
                              _dilation=0,
                              heterogeity_size=5,
                              feature_size=50)

pipeline = wf.label_and_correct(pipeline,
                                in_channel=['nuclei', 'DAPI'],
                                out_channel='nuclei',
                                min_px_radius=15,
                                min_intensity=20)
print "4"

# p53 segmentation

pipeline = wf.label_based_aq(pipeline,
                             in_channel=['nuclei', 'p53'],
                             out_channel=['av_p53', 'av_p53_pad'])
예제 #2
0
med_norm_mCh = wf.locally_normalize(med_norm_GFP,
                                                         in_channel='mCherry',
                                                         )

projected_GFP = wf.max_projection(med_norm_mCh,
                                                       in_channel='GFP',
                                                       out_channel='projected_GFP')

projected_mCh = wf.max_projection(projected_GFP,
                                                       in_channel='mCherry',
                                                       out_channel='projected_mCh')


binarized_GFP = wf.robust_binarize(projected_mCh,
                                                        in_channel='projected_GFP',
                                                        out_channel='cell_tags',
                                                        heterogeity_size=5,
                                                        feature_size=70,
                                                        )

segmented_GFP = wf.improved_watershed(binarized_GFP,
                                                           in_channel=['cell_tags', 'projected_mCh'],
                                                           out_channel='pre_cell_labels',
                                                           expected_separation=100)

qualifying_GFP = wf.qualifying_gfp(segmented_GFP,
                                                        in_channel='projected_GFP',
                                                        out_channel='qualifying_GFP')

average_GFP = wf.average_qualifying_value_per_region(qualifying_GFP,
                                                                          in_channel=['pre_cell_labels', 'projected_GFP', 'qualifying_GFP'],
                                                                          out_channel=['average_GFP', 'average_GFP_pad'])
예제 #3
0
max_GFP = wf.max_projection(max_mCherry,
                            in_channel='GFP',
                            out_channel='max_GFP')

stabilized_mCherry = wf.gamma_stabilize(max_GFP,
                                        in_channel='max_mCherry',
                                        floor_method='min',
                                        alpha_clean=.5)

smoothed_mCherry = wf.smooth_2d(stabilized_mCherry,
                                in_channel='max_mCherry',
                                smoothing_px=.5)

mCherry_o_n_segmented = wf.robust_binarize(smoothed_mCherry,
                                           in_channel='max_mCherry',
                                           out_channel='max_mCherry_binary',
                                           heterogeity_size=10,
                                           feature_size=250)

running_render = examples.kristen_support.Kristen_render(
    mCherry_o_n_segmented,
    in_channel=[
        'name pattern', 'group id', 'max_mCherry', 'max_mCherry_binary', 'GFP',
        'mCherry'
    ],
    out_channel='_',
    output='Kristen_Transfection_B_and_C_GFP_analysis_results.csv',
    save=True)

#
# Kristen_summary = rdr.Kristen_summarize_a(running_render, in_channel = ['name pattern', 'q_mean','q_median', 'q_std', 'nq_mean', 'nq_median', 'nq_std', 'slope', 'r2', 'p'],
예제 #4
0
stabilized_GFP = wf.gamma_stabilize(named_source, in_channel='GFP')
smoothed_GFP = wf.smooth(stabilized_GFP, in_channel='GFP')

stabilized_mCh = wf.gamma_stabilize(smoothed_GFP, in_channel='mCherry')

projected_GFP = wf.sum_projection(stabilized_mCh,
                                  in_channel='GFP',
                                  out_channel='projected_GFP')

projected_mCh = wf.max_projection(projected_GFP,
                                  in_channel='mCherry',
                                  out_channel='projected_mCh')

binarized_GFP = wf.robust_binarize(projected_mCh,
                                   in_channel='projected_mCh',
                                   out_channel='cell_tags')

segmented_GFP = wf.improved_watershed(
    binarized_GFP,
    in_channel=['cell_tags', 'projected_mCh'],
    out_channel='pre_cell_labels')

qualifying_GFP = wf.qualifying_gfp(segmented_GFP,
                                   in_channel='projected_GFP',
                                   out_channel='qualifying_GFP')

average_GFP = wf.average_qualifying_value_per_region(
    qualifying_GFP,
    in_channel=['pre_cell_labels', 'projected_GFP', 'qualifying_GFP'],
    out_channel=['average_GFP', 'average_GFP_pad'])
예제 #5
0
source = examples.akshay_support.Akshay_traverse(source_directory)
named_source = uf.name_channels(source, ['DAPI', 'p53', 'p21'])

stablilized_1 = wf.gamma_stabilize(named_source, in_channel='DAPI', floor_method='min', alpha_clean=.5)
smoothed_1 = wf.smooth_2d(stablilized_1, in_channel='DAPI', smoothing_px=.5)  # corresponds to a pixel of 1500 nm

stablilized_2 = wf.gamma_stabilize(smoothed_1, in_channel='p53', floor_method='min', alpha_clean=.0)
smoothed_2 = wf.smooth_2d(stablilized_2, in_channel='p53', smoothing_px=.5)

stablilized_3 = wf.gamma_stabilize(smoothed_2, in_channel='p21', floor_method='5p', alpha_clean=.5)
smoothed_3 = wf.smooth_2d(stablilized_3, in_channel='p21', smoothing_px=.5)

binarized_nuclei = wf.robust_binarize(smoothed_3,
                                                           in_channel='DAPI',
                                                           out_channel=['nuclei'],
                                                           _dilation=0,
                                                           heterogeity_size=5, feature_size=50)

segmented_nuclei = wf.label_and_correct(binarized_nuclei,
                                                             in_channel=['nuclei', 'DAPI'],
                                                             out_channel='nuclei',
                                                             min_px_radius=15, min_intensity=20)

# p53 segmentation

p53_aq = wf.label_based_aq(segmented_nuclei,
                                                in_channel=['nuclei', 'p53'],
                                                out_channel=['av_p53', 'av_p53_pad'])

p53_o_n = wf.exclude_region(p53_aq,