floor_method='min', alpha_clean=.5) pipeline = wf.smooth_2d(pipeline, in_channel='DAPI', smoothing_px=.5) # corresponds to a pixel of 1500 nm print "2" pipeline = wf.gamma_stabilize(pipeline, in_channel='p53', floor_method='min', alpha_clean=.0) pipeline = wf.smooth_2d(pipeline, in_channel='p53', smoothing_px=.5) print "3" pipeline = wf.robust_binarize(pipeline, in_channel='DAPI', out_channel=['nuclei'], _dilation=0, heterogeity_size=5, feature_size=50) pipeline = wf.label_and_correct(pipeline, in_channel=['nuclei', 'DAPI'], out_channel='nuclei', min_px_radius=15, min_intensity=20) print "4" # p53 segmentation pipeline = wf.label_based_aq(pipeline, in_channel=['nuclei', 'p53'], out_channel=['av_p53', 'av_p53_pad'])
med_norm_mCh = wf.locally_normalize(med_norm_GFP, in_channel='mCherry', ) projected_GFP = wf.max_projection(med_norm_mCh, in_channel='GFP', out_channel='projected_GFP') projected_mCh = wf.max_projection(projected_GFP, in_channel='mCherry', out_channel='projected_mCh') binarized_GFP = wf.robust_binarize(projected_mCh, in_channel='projected_GFP', out_channel='cell_tags', heterogeity_size=5, feature_size=70, ) segmented_GFP = wf.improved_watershed(binarized_GFP, in_channel=['cell_tags', 'projected_mCh'], out_channel='pre_cell_labels', expected_separation=100) qualifying_GFP = wf.qualifying_gfp(segmented_GFP, in_channel='projected_GFP', out_channel='qualifying_GFP') average_GFP = wf.average_qualifying_value_per_region(qualifying_GFP, in_channel=['pre_cell_labels', 'projected_GFP', 'qualifying_GFP'], out_channel=['average_GFP', 'average_GFP_pad'])
max_GFP = wf.max_projection(max_mCherry, in_channel='GFP', out_channel='max_GFP') stabilized_mCherry = wf.gamma_stabilize(max_GFP, in_channel='max_mCherry', floor_method='min', alpha_clean=.5) smoothed_mCherry = wf.smooth_2d(stabilized_mCherry, in_channel='max_mCherry', smoothing_px=.5) mCherry_o_n_segmented = wf.robust_binarize(smoothed_mCherry, in_channel='max_mCherry', out_channel='max_mCherry_binary', heterogeity_size=10, feature_size=250) running_render = examples.kristen_support.Kristen_render( mCherry_o_n_segmented, in_channel=[ 'name pattern', 'group id', 'max_mCherry', 'max_mCherry_binary', 'GFP', 'mCherry' ], out_channel='_', output='Kristen_Transfection_B_and_C_GFP_analysis_results.csv', save=True) # # Kristen_summary = rdr.Kristen_summarize_a(running_render, in_channel = ['name pattern', 'q_mean','q_median', 'q_std', 'nq_mean', 'nq_median', 'nq_std', 'slope', 'r2', 'p'],
stabilized_GFP = wf.gamma_stabilize(named_source, in_channel='GFP') smoothed_GFP = wf.smooth(stabilized_GFP, in_channel='GFP') stabilized_mCh = wf.gamma_stabilize(smoothed_GFP, in_channel='mCherry') projected_GFP = wf.sum_projection(stabilized_mCh, in_channel='GFP', out_channel='projected_GFP') projected_mCh = wf.max_projection(projected_GFP, in_channel='mCherry', out_channel='projected_mCh') binarized_GFP = wf.robust_binarize(projected_mCh, in_channel='projected_mCh', out_channel='cell_tags') segmented_GFP = wf.improved_watershed( binarized_GFP, in_channel=['cell_tags', 'projected_mCh'], out_channel='pre_cell_labels') qualifying_GFP = wf.qualifying_gfp(segmented_GFP, in_channel='projected_GFP', out_channel='qualifying_GFP') average_GFP = wf.average_qualifying_value_per_region( qualifying_GFP, in_channel=['pre_cell_labels', 'projected_GFP', 'qualifying_GFP'], out_channel=['average_GFP', 'average_GFP_pad'])
source = examples.akshay_support.Akshay_traverse(source_directory) named_source = uf.name_channels(source, ['DAPI', 'p53', 'p21']) stablilized_1 = wf.gamma_stabilize(named_source, in_channel='DAPI', floor_method='min', alpha_clean=.5) smoothed_1 = wf.smooth_2d(stablilized_1, in_channel='DAPI', smoothing_px=.5) # corresponds to a pixel of 1500 nm stablilized_2 = wf.gamma_stabilize(smoothed_1, in_channel='p53', floor_method='min', alpha_clean=.0) smoothed_2 = wf.smooth_2d(stablilized_2, in_channel='p53', smoothing_px=.5) stablilized_3 = wf.gamma_stabilize(smoothed_2, in_channel='p21', floor_method='5p', alpha_clean=.5) smoothed_3 = wf.smooth_2d(stablilized_3, in_channel='p21', smoothing_px=.5) binarized_nuclei = wf.robust_binarize(smoothed_3, in_channel='DAPI', out_channel=['nuclei'], _dilation=0, heterogeity_size=5, feature_size=50) segmented_nuclei = wf.label_and_correct(binarized_nuclei, in_channel=['nuclei', 'DAPI'], out_channel='nuclei', min_px_radius=15, min_intensity=20) # p53 segmentation p53_aq = wf.label_based_aq(segmented_nuclei, in_channel=['nuclei', 'p53'], out_channel=['av_p53', 'av_p53_pad']) p53_o_n = wf.exclude_region(p53_aq,