예제 #1
0
def query():
    ''' the main query processing program, using QueryProcessor'''

    # ToDo: the commandline usage: "echo query_string | python query.py index_file processing_algorithm"
    # processing_algorithm: 0 for booleanQuery and 1 for vectorQuer
    # for booleanQuery, the program will print the total number of documents and the list of docuement IDs
    # for vectorQuery, the program will output the top 3 most similar documents

    # Ensure args are valid
    if len(argv) is not 5:
        print(
            "Syntax: python query.py <index-file-path> <processing-algorithm> <query.txt path> <query-id>"
        )
        return

    # Grab arguments
    index_file_loc = argv[1]
    processing_algo = argv[2]
    query_file_path = argv[3]
    query_id = argv[4]

    # Grab index file to restore II
    ii = InvertedIndex()
    ii.load(index_file_loc)

    # Get the document collection
    cf = CranFile("cran.all")

    # Get the query collection
    qc = loadCranQry(query_file_path)

    # Get the query
    if 0 < int(query_id) < 10:
        query_id = '00' + str(int(query_id))
    elif 9 < int(query_id) < 100:
        query_id = '0' + str(int(query_id))
    try:
        query = qc[query_id].text
    except KeyError:
        print("Invalid query id", query_id)
        return

    # Initialize a query processor
    qp = QueryProcessor(query, ii, cf)

    # Do query
    if int(processing_algo) is 0:
        result = qp.booleanQuery()
        if result:
            print("Results:", ", ".join(str(x) for x in qp.booleanQuery()))
        else:
            print("Results: None")
    elif int(processing_algo) is 1:
        result = qp.vectorQuery(k=3)
        print("Results:")
        for r in result:
            print("Doc", r[0], "Score", r[1])
    else:
        print("Invalid processing algorithm",
              processing_algo + ". Use 0 (boolean) or 1 (vector).")
예제 #2
0
def test_InvertedIndex():
    data = ("a,b,c,d,e,f\n"
            "g,h,i,j,k,l\n"
            "z,x\n"
            "z,x\n"
            "z,x,y\n"
            "z,x,y,i\n")
    index = InvertedIndex()
    index.load(data)
    assert (index.support({Item("a")}) == 1 / 6)
    assert (index.support({Item("b")}) == 1 / 6)
    assert (index.support({Item("c")}) == 1 / 6)
    assert (index.support({Item("d")}) == 1 / 6)
    assert (index.support({Item("e")}) == 1 / 6)
    assert (index.support({Item("f")}) == 1 / 6)
    assert (index.support({Item("h")}) == 1 / 6)
    assert (index.support({Item("i")}) == 2 / 6)
    assert (index.support({Item("j")}) == 1 / 6)
    assert (index.support({Item("k")}) == 1 / 6)
    assert (index.support({Item("l")}) == 1 / 6)
    assert (index.support({Item("z")}) == 4 / 6)
    assert (index.support({Item("x")}) == 4 / 6)
    assert (index.support({Item("y")}) == 2 / 6)

    sup_zx = index.support({Item("z"), Item("x")})
    assert (sup_zx == 4 / 6)

    sup_zxy = index.support({Item("z"), Item("x"), Item("y")})
    assert (sup_zxy == 2 / 6)

    sup_zxyi = index.support({Item("z"), Item("x"), Item("y"), Item("i")})
    assert (sup_zxyi == 1 / 6)
예제 #3
0
def test_apriori():
    data = ("a,b,c,d,e,f\n"
            "g,h,i,j,k,l\n"
            "z,x\n"
            "z,x\n"
            "z,x,y\n"
            "z,x,y,i\n")

    expectedItemSets = {
        ItemSet("i"): 2 / 6,
        ItemSet("z"): 4 / 6,
        ItemSet("x"): 4 / 6,
        ItemSet("y"): 2 / 6,
        ItemSet("xz"): 4 / 6,
        ItemSet("yz"): 2 / 6,
        ItemSet("xy"): 2 / 6,
        ItemSet("xyz"): 2 / 6
    }

    index = InvertedIndex()
    index.load(data)
    itemsets = apriori(index, 2 / 6)
    assert (set(expectedItemSets.keys()) == set(itemsets))
    for itemset in itemsets:
        assert (expectedItemSets[itemset] == index.support(itemset))

    print("Itemsets={}".format([i for i in itemsets if len(i) > 1]))

    # (antecedent, consequent, confidence, lift, support)
    expectedRules = {
        (frozenset({Item("x"),
                    Item("y")}), frozenset({Item("z")}), 1, 1.5, 1 / 3),
        (frozenset({Item("x")}), frozenset({Item("y")}), 0.5, 1.5, 1 / 3),
        (frozenset({Item("x")}), frozenset({Item("z"),
                                            Item("y")}), 0.5, 1.5, 1 / 3),
        (frozenset({Item("x")}), frozenset({Item("z")}), 1, 1.5, 2 / 3),
        (frozenset({Item("y")}), frozenset({Item("x")}), 1, 1.5, 1 / 3),
        (frozenset({Item("y")}), frozenset({Item("z"),
                                            Item("x")}), 1, 1.5, 1 / 3),
        (frozenset({Item("y")}), frozenset({Item("z")}), 1, 1.5, 1 / 3),
        (frozenset({Item("z"),
                    Item("x")}), frozenset({Item("y")}), 0.5, 1.5, 1 / 3),
        (frozenset({Item("z"),
                    Item("y")}), frozenset({Item("x")}), 1, 1.5, 1 / 3),
        (frozenset({Item("z")}), frozenset({Item("x"),
                                            Item("y")}), 0.5, 1.5, 1 / 3),
        (frozenset({Item("z")}), frozenset({Item("x")}), 1, 1.5, 2 / 3),
        (frozenset({Item("z")}), frozenset({Item("y")}), 0.5, 1.5, 1 / 3),
    }

    rules = set(generate_rules(itemsets, 0, 0, index))

    for (antecedent, consequent, confidence, lift, support) in rules:
        print("{}, {} conf={:.4f}, {:.4f}, {:.4f}".format(
            antecedent, consequent, confidence, lift, support))

    assert (rules == expectedRules)
예제 #4
0
 def booleanQuery(self):
     """ boolean query processing; note that a query like "A B C" is transformed to "A AND B AND C"
     for retrieving posting lists and merge them"""
     ivObj = InvertedIndex()
     ivObj.load(self.filename)
     index_item = ivObj.items[self.tokens[0]]
     # Get the doc ids from the sorted postings in the same order.
     docs = index_item.get_sorted_doc_ids()
     for token in self.tokens:
         index_item = ivObj.items[token]
         # Find intersection between the current docs and the index_item for the current token.
         docs = index_item.intersection(docs)
     return docs
예제 #5
0
def query( indexfilename,processingalgorithm,queryfilename, queryid, numresults=3):
    ''' the main query processing program, using QueryProcessor'''

    # ToDo: the commandline usage: "echo query_string | python query.py index_file processing_algorithm"
    # processing_algorithm: 0 for booleanQuery and 1 for vectorQuery
    # for booleanQuery, the program will print the total number of documents and the list of docuement IDs
    # for vectorQuery, the program will output the top 3 most similar documents

    qrys = loadCranQry(queryfilename)
#    for q in qrys:
#        print(q, qrys[q].text)

    loadiindex = InvertedIndex()
    loadiindex = loadiindex.load(indexfilename)
#    print("index loaded")

    cf = CranFile('cran.all')

    queryProcessor = QueryProcessor(qrys, loadiindex, cf.docs, numresults)
    if processingalgorithm == '0' :
        queryProcessor.preprocessing()
        queryProcessor.queryId = queryid
        results = queryProcessor.booleanQuery()
    if processingalgorithm == '1':
        queryProcessor.queryId = queryid
        results = queryProcessor.vectorQuery(queryProcessor.numofresults)
    return results
예제 #6
0
    def vectorQuery(self, k):
        """ vector query processing, using the cosine similarity. """
        # ToDo: return top k pairs of (docID, similarity), ranked by their cosine similarity with the query in the descending order
        # You can use term frequency or TFIDF to construct the vectors
        result = {}
        ivObj = InvertedIndex()
        ivObj.load(self.filename)  # loading the InvertedIndex
        doc_set = set()
        term_idf_list = []
        for term in self.tokens:  # for every term in the query finding the document IDs where the term is present
            if term in self.index:
                doc_set = doc_set.union(set(self.index[term].posting.keys()))
            term_idf_list.append(
                ivObj.idf(term) * 1.0 /
                len(self.tokens))  # calculating tf-idf weights for query
        doc_list = list(doc_set)
        for docID in doc_list:  # Calculating tf-idf weights for the above documents
            for term in self.tokens:
                if term in self.index:
                    if docID in result.keys():
                        result[docID].append(ivObj.tfidf(term, docID))
                    else:
                        result[docID] = [ivObj.tfidf(term, docID)]
                else:
                    if docID in result.keys():
                        result[docID].append(0.0)
                    else:
                        result[docID] = [0.0]

        score_dict = {}
        term_idf_list_np = np.array(self.unitVector(
            term_idf_list))  # calculating unit vector for each document
        for docID in doc_list:
            unit_result = self.unitVector(result[docID])
            unit_np = np.array(unit_result)
            score_dict[docID] = np.dot(
                term_idf_list_np,
                unit_np)  # dot product for query and each document
        score_list = score_dict.items()
        final = sorted(score_list, key=itemgetter(1), reverse=True)
        similarity = []
        for i in range(0, k):
            similarity.append(final[i])
        return similarity  # list of (docID,cosine similarity) in order of ranking
예제 #7
0
def setup_ranker():
    global ranker

    text_processor = TextProcessor()
    docs = []
    index = InvertedIndex.load(INDEX_FOLDER, "inverted_index")
    articles = select(article.id for article in Article)
    for article_id in articles:
        article = Article[article_id]
        docs.append(
            AbstractAndArticle(article,
                               _read_file(article.processed_abstract_path)))

    ranker = TfIdf(index, text_processor, docs, VECTORS_PER_FILE,
                   VECTORS_SAVE_FOLDER)
예제 #8
0
def build_index():
    if not os.path.exists(INDEX_FOLDER):
        os.mkdir(INDEX_FOLDER)

    index = InvertedIndex.load(INDEX_FOLDER, InvertedIndex.NAME)

    if index:
        logging.debug("Index is successfully loaded")
        return

    logging.debug("Building index...")
    articles = select(article.id for article in Article)[:]
    index = InvertedIndex()
    IndexBuilder(processes=1).build(index, articles)
    logging.debug("Saving index...")
    index.save(INDEX_FOLDER)
def query(index_file, algorithm, query_file, query_id):
    ''' the main query processing program, using QueryProcessor'''

    # ToDo: the commandline usage: "echo query_string | python query.py index_file processing_algorithm"
    # processing_algorithm: 0 for booleanQuery and 1 for vectorQuery
    # for booleanQuery, the program will print the total number of documents and the list of docuement IDs
    # for vectorQuery, the program will output the top 3 most similar documents
    query_file = cranqry.loadCranQry(query_file)  # loading file
    index_items = InvertedIndex()
    index_items = index_items.load(index_file)
    cran_file = cran.CranFile('cran.all')
    query_verify = QueryProcessor(query_file, index_items, cran_file.docs)
    query_verify.preprocessing()
    results = None
    if algorithm == '0':  # if algorithm is 0 it represents boolean model
        results = query_verify.booleanQuery(query_id)
    elif algorithm == '1':  # if algorithm is 1 it is vector model
        results = query_verify.vectorQuery(3, query_id)
    print(results)
예제 #10
0
def run_rank():
    text_processor = TextProcessor()
    docs = []
    index = InvertedIndex.load(INDEX_FOLDER, "inverted_index")
    articles = select(article.id for article in Article)
    for article_id in articles:
        article = Article[article_id]
        docs.append(AbstractAndArticle(article, _read_file(article.processed_abstract_path)))

    ranker = TfIdf(index,
                   text_processor,
                   docs,
                   vectors_per_file=VECTORS_PER_FILE,
                   vectors_save_folder=VECTORS_SAVE_FOLDER)

    while True:
        query = input("Enter query: ")
        top_ids = ranker.rank(query, 5)
        for article_id in top_ids:
            article = Article[article_id]
            print(article.title, article.document.url)
예제 #11
0
def eval():

    # Algorithm:
    # Pick N random samples from query.txt
    # Get top 10 results from bool query for each rnd query
    # Get top 10 results from vector query for each rnd query
    # Compute NDCG btn bool query results and qrels.txt
    # Compute NDCG btn vector query results and qrels.txt
    # Get p-value btn bool and vector

    # Get the query collection
    qc = loadCranQry(query_path)
    poss_queries = list(qc)

    # Load up the inverted index
    ii = InvertedIndex()
    ii.load(index_file)

    # Load up the document collection
    cf = CranFile("cran.all")

    # Get ground-truth results from qrels.txt
    with open(qrels_path) as f:
        qrels = f.readlines()

    # Index qrels into a dict
    qrel_dict = {}
    for qrel in qrels:
        qrel_split = qrel.split()
        if int(qrel_split[0]) in qrel_dict:
            qrel_dict[int(qrel_split[0])].append(int(qrel_split[1]))
        else:
            qrel_dict[int(qrel_split[0])] = [int(qrel_split[1])]

    # Run over N random queries, collecting NDCGs
    bool_ndcgs = []
    vector_ndcgs = []
    for _ in range(n):
        # Get random query ID
        query_id = choice(poss_queries)

        # Get the query
        if 0 < int(query_id) < 10:
            query_id = '00' + str(int(query_id))
        elif 9 < int(query_id) < 100:
            query_id = '0' + str(int(query_id))
        try:
            query = qc[query_id].text
        except KeyError:
            print("Invalid query id", query_id)
            return

        # Initialize the query processor
        qp = QueryProcessor(query, ii, cf)

        # Run bool query
        bool_result = qp.booleanQuery()[:10]

        # Run vector query
        vector_result = qp.vectorQuery(10)

        # Pull top 10 ground-truth results from qrels dict
        gt_results = qrel_dict[poss_queries.index(query_id) + 1][:10]

        # Compute NDCG for bool query
        # NOTE: There is no weighting on the bool query, so give all an even 1
        truth_vector = list(map(lambda x: x in gt_results, bool_result))
        bool_ndcg = ndcg_score(truth_vector, [1] * len(truth_vector),
                               k=len(truth_vector))

        # Compute NDCG for vector query
        vector_docs = []
        vector_scores = []
        for v in vector_result:
            vector_docs.append(v[0])
            vector_scores.append(v[1])
        truth_vector = list(map(lambda x: x in gt_results, vector_docs))
        vector_ndcg = ndcg_score(truth_vector,
                                 vector_scores,
                                 k=len(truth_vector))

        # Accumulate NDCGs
        bool_ndcgs.append(bool_ndcg)
        vector_ndcgs.append(vector_ndcg)

    # Average out score lists
    bool_avg = 0
    for bool in bool_ndcgs:
        bool_avg += bool
    bool_avg /= len(bool_ndcgs)

    vector_avg = 0
    for vector in vector_ndcgs:
        vector_avg += vector
    vector_avg /= len(vector_ndcgs)

    # Present averages and p-values
    print("Boolean NDCG average:", bool_avg)
    print("Vector NDCG average:", vector_avg)
    if n > 19:
        print("Wilcoxon p-value:", wilcoxon(bool_ndcgs, vector_ndcgs).pvalue)
    else:
        print("Wilcoxon p-value: Sample size too small to be significant")
    print("T-Test p-value:", ttest_ind(bool_ndcgs, vector_ndcgs).pvalue)
예제 #12
0
def main():

    #########
    # SETUP #
    #########

    # Get input args
    newsgroups_root_dir = argv[1]
    feat_def_path = argv[2]
    class_def_path = argv[3]
    training_data_path = argv[4]

    # Generate index
    #index_newsgroups(newsgroups_root_dir, "idx_save.pkl")
    ii = InvertedIndex()
    ii.load("idx_save.pkl")

    # Write out feature/term pairs to feat_def_path
    feature_id = 0
    with open(feat_def_path, 'w') as outf:
        for item in ii.items:
            outf.write(str(feature_id) + " " + str(item) + "\n")
            feature_id += 1

    # Read back in the feature/term pairs for later
    with open(feat_def_path, 'r') as inf:
        ft_pairs = inf.readlines()

    # Put the ft_pairs into a dictionary for quick lookup
    ft_dict = {}
    for pair in ft_pairs:
        ft_dict[pair.split()[1].strip()] = pair.split()[0]

    # Map the different newsgroups to a given class
    # This is fairly manual...
    with open(class_def_path, 'w') as outf:
        for dir in listdir(newsgroups_root_dir):
            outf.write(class_def_helper(dir) + " " + dir + "\n")

    ############################
    # TRAINING DATA GENERATION #
    ############################

    # Create the training data
    # For each document:
    # Find its containing folder, and extract class from class def
    # For each term in document
    # Compute tfidf, tf or idf
    current_file_id = 1
    with open(training_data_path + ".TFIDF", 'w') as outf:
        # Compute tf-idf
        # Go through each document in newsgroups dir
        for root, _, files in walk(newsgroups_root_dir):
            # Find and write out the class label
            local_dir = root.split(sep)[-1]

            # For each file...
            for file in files:
                outf.write(class_def_helper(local_dir) + " ")
                print(root, file)

                # Get the words from the doc
                stemmed_token_list = preprocess_doc(root + sep + file)

                # Put all the info into a set (for uniqueness)
                data_set = set()

                # Now that we've re-done all that, find idfs
                for word in stemmed_token_list:
                    # Skip blank stopwords
                    if word == "": continue

                    # Get the term ID
                    #outf.write(ft_dict[word] + ":")

                    # Calculate and write out TF-IDF
                    # Note current_file_id is our doc_id
                    tf = ii.find(word).posting[current_file_id].term_freq()
                    idf = ii.idf(word)
                    #outf.write(str(log10(1 + tf) * idf) + " ")
                    data_set.add(ft_dict[word] + ":" +
                                 str(log10(1 + tf) * idf))

                # Write newline to signify end of file
                #outf.write("\n")
                outf.write(" ".join(
                    sorted(data_set, key=lambda x: int(x.split(':')[0]))) +
                           "\n")
                outf.flush()

                # Increment our current doc
                current_file_id += 1

    current_file_id = 1
    with open(training_data_path + ".TF", 'w') as outf:
        # Compute tf
        # Go through each document in newsgroups dir
        for root, _, files in walk(newsgroups_root_dir):
            # Find and write out the class label
            local_dir = root.split(sep)[-1]

            # For each file...
            for file in files:
                outf.write(class_def_helper(local_dir) + " ")
                print(root, file)

                # Get the words from the doc
                stemmed_token_list = preprocess_doc(root + sep + file)

                # Put all the info into a set (for uniqueness)
                data_set = set()

                # Now that we've re-done all that, find idfs
                for word in stemmed_token_list:
                    # Skip blank stopwords
                    if word == "": continue

                    # Get the term ID
                    #outf.write(ft_dict[word] + ":")

                    # Write the TF
                    # Note current_file_id is our doc_id
                    # outf.write(str(ii.find(word).posting[
                    # current_file_id].term_freq()) + " ")
                    data_set.add(ft_dict[word] + ":" + str(
                        ii.find(word).posting[current_file_id].term_freq()))

                # Write newline to signify end of file
                # outf.write("\n")
                outf.write(" ".join(
                    sorted(data_set, key=lambda x: int(x.split(':')[0]))) +
                           "\n")
                # outf.flush()

                # Increment our current doc
                current_file_id += 1

    current_file_id = 1
    with open(training_data_path + ".IDF", 'w') as outf:
        # Compute idf
        # Go through each document in newsgroups dir
        for root, _, files in walk(newsgroups_root_dir):
            # Find and write out the class label
            local_dir = root.split(sep)[-1]

            # For each file...
            for file in files:
                outf.write(class_def_helper(local_dir) + " ")
                print(root, file)

                # Get the words from the doc
                stemmed_token_list = preprocess_doc(root + sep + file)

                # Put all the info into a set (for uniqueness)
                data_set = set()

                # Now that we've re-done all that, find idfs
                for word in stemmed_token_list:
                    # Skip blank stopwords
                    if word == "": continue

                    # Get the term ID
                    #outf.write(ft_dict[word] + ":" + str(ii.idf(word))
                    #    + " ")
                    data_set.add(ft_dict[word] + ":" + str(ii.idf(word)))

                # Write newline to signify end of file
                outf.write(" ".join(
                    sorted(data_set, key=lambda x: int(x.split(':')[0]))) +
                           "\n")
예제 #13
0
def test_apriori():
    data = ("a,b,c,d,e,f\n"
            "g,h,i,j,k,l\n"
            "z,x\n"
            "z,x\n"
            "z,x,y\n"
            "z,x,y,i\n")

    expectedItemSets = {ItemSet("i"): 2 / 6,
                        ItemSet("z"): 4 / 6,
                        ItemSet("x"): 4 / 6,
                        ItemSet("y"): 2 / 6,
                        ItemSet("xz"): 4 / 6,
                        ItemSet("yz"): 2 / 6,
                        ItemSet("xy"): 2 / 6,
                        ItemSet("xyz"): 2 / 6}

    index = InvertedIndex()
    index.load(data)
    itemsets = apriori(index, 2 / 6)
    assert(len(itemsets) == len(expectedItemSets))
    for itemset in itemsets:
        assert(frozenset(itemset) in expectedItemSets)
    for itemset in itemsets:
        assert(expectedItemSets[frozenset(itemset)] == index.support(itemset))

    print("Itemsets={}".format([i for i in itemsets if len(i) > 1]))

    def itemize(a):
        return list(map(item_id, a))

    # (antecedent, consequent, confidence, lift, support)
    rx = [
        (['y'], ['x'], 1.0, 1.5, 0.3333333333333333),
        (['x'], ['y'], 0.5, 1.5, 0.3333333333333333),
        (['y'], ['z'], 1.0, 1.5, 0.3333333333333333),
        (['z'], ['y'], 0.5, 1.5, 0.3333333333333333),
        (['x'], ['z'], 1.0, 1.5, 0.6666666666666666),
        (['z'], ['x'], 1.0, 1.5, 0.6666666666666666),
        (['x', 'y'], ['z'], 1.0, 1.5, 0.3333333333333333),
        (['z', 'y'], ['x'], 1.0, 1.5, 0.3333333333333333),
        (['z', 'x'], ['y'], 0.5, 1.5, 0.3333333333333333),
        (['y'], ['z', 'x'], 1.0, 1.5, 0.3333333333333333),
        (['x'], ['z', 'y'], 0.5, 1.5, 0.3333333333333333),
        (['z'], ['x', 'y'], 0.5, 1.5, 0.3333333333333333)
    ]

    expectedRules = list(map(lambda a: (itemize(a[0]), itemize(a[1]), a[2], a[3], a[4]), rx))

    itemset_counts = dict(map(lambda i: (tuple(i), index.count(i)), itemsets))
    rules = generate_rules(
        itemsets,
        itemset_counts,
        index.num_transactions,
        0,
        0)

    def deitemize(a):
        return list(map(item_str, a))

    p = list(map(lambda a: (deitemize(a[0]), deitemize(a[1]), a[2], a[3], a[4]), rules))
    print("rules")
    print(p)

    for (antecedent,
         consequent,
         confidence,
         lift,
         support) in rules:
        print("{}, {} conf={:.4f}, {:.4f}, {:.4f}".
              format(antecedent, consequent, confidence, lift, support))

    assert(len(rules) == len(expectedRules))
    for i in range(len(rules)):
        assert(expectedRules[i] in rules)
예제 #14
0
def eval(indexfilename, queryfilename, queryrefilename, numberofrandomqueries):

    # ToDo
    actual = []
    #
    if numberofrandomqueries > 225:
        raise Exception('please enter query count less than or equal to 225')
    qrys = loadCranQry("query.text")
    validqueries = []
    querycounter = 0
    for q in qrys:
        validqueries.append(int(q))

    loadiindex = InvertedIndex()
    loadiindex = loadiindex.load("index_file.pickle")
    #    print("index loaded")
    cf = CranFile('cran.all')
    #QueryProcessor.numberofresult =10
    #qp = QueryProcessor(qrys,loadiindex,cf.docs,10)
    queryRelevence = dict()
    for line in open(queryrefilename):

        fields = line.split(" ")
        fields[0] = '%0*d' % (3, int(fields[0]))
        if fields[0] in queryRelevence:
            # and let's extract the data:
            queryRelevence[fields[0]].append(fields[1])
        else:
            # create a new array in this slot
            queryRelevence[fields[0]] = [fields[1]]
    replacecounter = 0
    queryRelevenceUpdated = {}
    for k in queryRelevence:

        queryRelevenceUpdated['%0*d' % (3, int(
            validqueries[replacecounter]))] = queryRelevence.get(k)
        replacecounter = replacecounter + 1

#  relevent = list(queryRelevence.keys())
# relevent = list(map(int, relevent))
#samplespace = np.intersect1d(relevent, validqueries)
    list_of_random_items = random.sample(validqueries, numberofrandomqueries)
    tempcounter2 = 0
    booleanndcg = []
    vectorndcg = []

    while tempcounter2 < numberofrandomqueries:

        list_of_random_items[tempcounter2] = '%0*d' % (
            3, int(list_of_random_items[tempcounter2]))
        print('query for which ndcg is calculated ' +
              str(list_of_random_items[tempcounter2]))
        y = str(list_of_random_items[tempcounter2])
        vectorresult = query(indexfilename, '1', queryfilename,
                             str(list_of_random_items[tempcounter2]), 10)
        #       vectorresult = ['573', '51', '944', '878', '12', '486', '875', '879', '746', '665']
        #       print(vectorresult)
        tempcounter = 0
        for z in vectorresult:

            if z in queryRelevenceUpdated[str(
                    list_of_random_items[tempcounter2])]:
                vectorresult[tempcounter] = 1
            else:
                vectorresult[tempcounter] = 0

            tempcounter = tempcounter + 1
        #print(vectorresult)
        idealvectorresult = vectorresult.copy()
        idealvectorresult.sort(reverse=True)
        #print(idealvectorresult)
        if sum(idealvectorresult) == 0:
            ndcgscore = 0
        else:
            ndcgscore = ndcg_score(idealvectorresult, vectorresult)
    # print(ndcgscore)
        vectorndcg.append(ndcgscore)
        tempcounter3 = 0

        booleanqueryresult = query(indexfilename, '0', queryfilename,
                                   str(list_of_random_items[tempcounter2]), 10)
        #booleanqueryresult = ['462','462','462','462','462','462','462','462','462']
        booleanquery = booleanqueryresult.copy()
        for g in booleanquery:

            if g in queryRelevenceUpdated[str(
                    list_of_random_items[tempcounter2])]:
                booleanquery[tempcounter3] = 1
            else:
                booleanquery[tempcounter3] = 0

            tempcounter3 = tempcounter3 + 1
        #print(booleanquery)
        tempcounter4 = len(booleanquery)
        while tempcounter4 < 10:
            booleanquery.append(0)
            tempcounter4 = tempcounter4 + 1
        idealbooleanresult = []
        for i in range(0, 10):
            if i < len(queryRelevenceUpdated[str(
                    list_of_random_items[tempcounter2])]):
                idealbooleanresult.append(1)
            else:
                idealbooleanresult.append(0)

        idealbooleanresult.sort(reverse=True)
        if sum(booleanquery) == 0:
            ndcgscoreboolean = 0
        else:
            ndcgscoreboolean = ndcg_score(booleanquery, idealbooleanresult)
        booleanndcg.append(ndcgscoreboolean)
        tempcounter2 = tempcounter2 + 1
    print('P value for all the queries processed is:')
    print(
        scipy.stats.wilcoxon(vectorndcg,
                             booleanndcg,
                             zero_method='wilcox',
                             correction=False))
    print('Done')
예제 #15
0
def test(index_loc, cran_loc, qrels_loc):
    ''' test your code thoroughly. put the testing cases here'''

    ##### SETUP ITEMS #####

    # Grab index file to restore II
    ii = InvertedIndex()
    ii.load(index_loc)

    # Get the document collection
    cf = CranFile(cran_loc)

    # Get ground-truth results from qrels.txt
    with open(qrels_loc) as f:
        qrels = f.readlines()

    # Index qrels into a dict
    qrel_dict = {}
    for qrel in qrels:
        qrel_split = qrel.split()
        if int(qrel_split[0]) in qrel_dict:
            qrel_dict[int(qrel_split[0])].append(int(qrel_split[1]))
        else:
            qrel_dict[int(qrel_split[0])] = [int(qrel_split[1])]

    ##### INITIAL TEST ITEMS #####
    print("TESTS BASED ON SUGGESTED TESTING POINTS")

    # Ensure tf is correct
    #   Find a random word and check TF value against what is manually done
    posting_list = ii.find("experiment").posting
    tf_vector = []
    for posting in posting_list:
        tf_vector.append(len(posting_list[posting].positions) \
            == posting_list[posting].term_freq())
    print("TF is computed correctly:", all(tf_vector))

    # Ensure idf is correct
    print("IDF is computed correctly:", log10(ii.nDocs / len(posting_list)) \
        == ii.idf("experiment"))

    # As both tf and idf are correct, and tf-idf is a product of the two,
    #   it is reasonable to assume tf-idf is computed correctly

    ##### BOOL QUERY TESTS #####

    # Here, I use very specific boolean queries to ensure that a
    #   limited number of documents are returned
    print("\nBOOL QUERY TESTS")

    # Ensure that the exact title of doc 8 matches for doc 8
    doc8 = "measurements of the effect of two-dimensional and three-dimensional roughness elements on boundary layer transition"
    qp1 = QueryProcessor(doc8, ii, cf)
    print("Bool query matches on exact title:", qp1.booleanQuery() == [8])

    # Ensure that bool query matches very specific AND query
    qp2 = QueryProcessor("hugoniot and infinitesimally", ii, cf)
    print(
        "Bool query matches on specific AND query ('hugoniot and infinitesimally'):",
        qp2.booleanQuery() == [329])

    # Test that an OR query is handled properly
    #   Both gravel and stagnation have completely distinct postings lists.
    #   OR should merge them.
    gravel_postings = ii.find("gravel").sorted_postings[:]
    stag_postings = ii.find("stagnat").sorted_postings[:]
    gravel_postings.extend(stag_postings)
    qp3 = QueryProcessor("gravel or stagnation", ii, cf)
    print("Bool query successfully handles OR ('gravel or stagnation'):",
          qp3.booleanQuery() == sorted(gravel_postings))

    # Test that NOT is handled properly
    #   The posting list for "diameter" is a subset of "slipstream" postings
    #   (oddly enough). To test this works, do "slipstream and not diameter"
    #   and we chould get slipstream's postings minus those of diameter.
    slip_postings = ii.find("slipstream").sorted_postings[:]
    diam_postings = ii.find("diamet").sorted_postings[:]
    slip_not_diam = [t for t in slip_postings if t not in diam_postings]
    print("Bool query successfully handles NOT ('slipstream and not diameter'):",
        QueryProcessor("slipstream and not diameter", ii, cf).booleanQuery() \
          == slip_not_diam)

    # Ensure AND/OR order doesn't matter
    print("Bool query can handle query regardless of AND order ('a and b' = 'b and a'):",
        QueryProcessor("slipstream and diameter", ii, cf).booleanQuery() \
          == QueryProcessor("diameter and slipstream", ii, cf).booleanQuery())
    print("Bool query can handle query regardless of OR order ('a or b' = 'b or a'):",
        QueryProcessor("slipstream or diameter", ii, cf).booleanQuery() \
          == QueryProcessor("diameter or slipstream", ii, cf).booleanQuery())

    # Ensure that the presence of parens does not change query results
    print("Bool query can handle query regardless of parens ('slipstream and diameter'):",
        QueryProcessor("slipstream and diameter", ii, cf).booleanQuery() \
          == QueryProcessor("(slipstream and diameter)", ii, cf).booleanQuery())

    # Ensure parentheses do not change order of processing for AND-AND and OR-OR queries
    print("Bool query AND is accociative ('(a and b) and c' = 'a and (b and c)'):",
        QueryProcessor("(slipstream and diameter) and thrust", ii, cf).booleanQuery() \
          == QueryProcessor("slipstream and (diameter and thrust)", ii, cf).booleanQuery())
    print("Bool query OR is accociative ('(a or b) or c' = 'a or (b or c)'):",
        QueryProcessor("(slipstream or diameter) or thrust", ii, cf).booleanQuery() \
          == QueryProcessor("slipstream or (diameter or thrust)", ii, cf).booleanQuery())

    # Ensure parentheses properly group items
    #   Tested by doing the query "manually" by adding/orring the correct terms
    part_one = QueryProcessor("conduction and cylinder and gas", ii,
                              cf).booleanQuery()
    part_two = QueryProcessor("radiation and gas", ii, cf).booleanQuery()
    part_one.extend(part_two)
    expected_result = QueryProcessor("hugoniot", ii, cf).booleanQuery()
    expected_result.extend(part_one)
    print("Bool query parens successfully group conflicting operators:",
        QueryProcessor("(conduction and cylinder and gas) or (radiation and gas) or hugoniot", ii, cf).booleanQuery() \
          == sorted(list(set(expected_result))))

    ##### VECTOR QUERY TESTS #####

    # For this, just ensure that most of the results are in the expected list
    print("\nVECTOR QUERY TESTS")

    # Ensure vector query can match on exact title
    print("Vector query matches on exact title:",
          qp1.vectorQuery(1)[0][0] == 8)

    # Try a few example queries from query.text
    #   As long as one-fifth of t-10 are in gt_result, call it a pass
    # Note that queries with larger answer sets were chosen to
    #   ensure there were enough to get to one-fifth of ten
    qc = loadCranQry("query.text")
    poss_queries = list(qc)

    # Query 001
    result = QueryProcessor(qc["001"].text, ii, cf).vectorQuery(10)
    gt_result = qrel_dict[poss_queries.index("001") + 1]
    correct_vector = list(map(lambda x: x in gt_result,
                              [x[0] for x in result]))
    print("Vector query is at least one-fifth correct for query 001:",
          sum(correct_vector) > 2)

    # Query 128
    result = QueryProcessor(qc["128"].text, ii, cf).vectorQuery(10)
    gt_result = qrel_dict[poss_queries.index("128") + 1]
    correct_vector = list(map(lambda x: x in gt_result,
                              [x[0] for x in result]))
    print("Vector query is at least one-fifth correct for query 128:",
          sum(correct_vector) > 2)

    # Query 226
    result = QueryProcessor(qc["226"].text, ii, cf).vectorQuery(10)
    gt_result = qrel_dict[poss_queries.index("226") + 1]
    correct_vector = list(map(lambda x: x in gt_result,
                              [x[0] for x in result]))
    print("Vector query is at least one-fifth correct for query 226:",
          sum(correct_vector) > 2)

    # Query 196
    result = QueryProcessor(qc["196"].text, ii, cf).vectorQuery(10)
    gt_result = qrel_dict[poss_queries.index("196") + 1]
    correct_vector = list(map(lambda x: x in gt_result,
                              [x[0] for x in result]))
    print("Vector query is at least one-fifth correct for query 196:",
          sum(correct_vector) > 2)

    # Query 291
    result = QueryProcessor(qc["291"].text, ii, cf).vectorQuery(10)
    gt_result = qrel_dict[poss_queries.index("291") + 1]
    correct_vector = list(map(lambda x: x in gt_result,
                              [x[0] for x in result]))
    print("Vector query is at least one-fifth correct for query 291:",
          sum(correct_vector) > 2)