def choose_plate(edate = '2016-10-11', ndays = 90): rindustry_info_client = RIndexIndustryInfo(redis_host='127.0.0.1') today_industry_df = rindustry_info_client.get_k_data(edate) pchange_df = today_industry_df.sort_values(by = 'pchange', ascending = False).head(3) mchange_df = today_industry_df.sort_values(by = 'mchange', ascending = False).head(3) plate_code_list = list(set(pchange_df.code.tolist()).intersection(pchange_df.code.tolist())) if len(plate_code_list) == 0: logger.info("no interested plate for date:%s" % edate) return list() sdate = get_day_nday_ago(edate, ndays, '%Y-%m-%d') #get sh index data sh_index_obj = CIndex('000001', redis_host='127.0.0.1') sh_index_info = sh_index_obj.get_k_data_in_range(sdate, edate) sh_index_pchange = 100 * (sh_index_info.loc[len(sh_index_info) - 1, 'close'] - sh_index_info.loc[0, 'preclose']) / sh_index_info.loc[0, 'preclose'] #get industry data all_industry_df = rindustry_info_client.get_k_data_in_range(sdate, edate) all_industry_df = all_industry_df.loc[all_industry_df.code.isin(plate_code_list)] industry_static_info = DataFrame(columns={'code', 'sai', 'pchange', ct.KL, ct.QL, ct.JL, ct.FL}) #choose better industry redisobj = create_redis_obj("127.0.0.1") today_industry_info = IndustryInfo.get(redisobj) for code, industry in all_industry_df.groupby('code'): industry = industry.reset_index(drop = True) industry['sri'] = 0 industry['sri'] = industry['pchange'] - sh_index_info['pchange'] industry['sai'] = 0 industry.at[(industry.pchange > 0) & (sh_index_info.pchange < 0), 'sai'] = industry.loc[(industry.pchange > 0) & (sh_index_info.pchange < 0), 'sri'] industry_sai = len(industry.loc[industry.sai > 0]) industry_pchange = 100 * (industry.loc[len(industry) - 1, 'close'] - industry.loc[0, 'preclose']) / industry.loc[0, 'preclose'] code_list = json.loads(today_industry_info.loc[today_industry_info.code == code, 'content'].values[0]) info_dict, good_code_list = choose_stock(code_list, sdate, edate) industry_static_info = industry_static_info.append(DataFrame([[code, industry_sai, industry_pchange, info_dict[ct.KL], info_dict[ct.QL], info_dict[ct.JL], info_dict[ct.FL]]], columns = ['code', 'sai', 'pchange', ct.KL, ct.QL, ct.JL, ct.FL]), sort = 'True') industry_static_info = industry_static_info.reset_index(drop = True) industry_static_info = industry_static_info.sort_values(by=['pchange'], ascending=False) return good_code_list
def generate_data(self, cdate): good_list = list() obj_pool = Pool(500) all_df = pd.DataFrame() industry_info = IndustryInfo.get(self.redis) failed_list = industry_info.code.tolist() cfunc = partial(self.get_industry_data, cdate) failed_count = 0 while len(failed_list) > 0: is_failed = False self.logger.debug("restart failed ip len(%s)" % len(failed_list)) for code_data in obj_pool.imap_unordered(cfunc, failed_list): if code_data[1] is not None: tem_df = code_data[1] tem_df['code'] = code_data[0] all_df = all_df.append(tem_df) failed_list.remove(code_data[0]) else: is_failed = True if is_failed: failed_count += 1 if failed_count > 10: self.logger.info("%s rindustry init failed" % failed_list) return pd.DataFrame() time.sleep(10) obj_pool.join(timeout=5) obj_pool.kill() self.mysql_client.changedb(self.get_dbname()) if all_df.empty: return all_df all_df = all_df.reset_index(drop=True) return all_df
def get_industry_data(self, cdate): ri = RIndexIndustryInfo() df = ri.get_k_data(cdate) if df.empty: return df df = df.reset_index(drop=True) df = df.sort_values(by='amount', ascending=False) df['money_change'] = (df['amount'] - df['preamount']) / 1e8 industry_info = IndustryInfo.get() df = pd.merge(df, industry_info, how='left', on=['code']) return df
def get_industry_data(self, _date): df = pd.DataFrame() df_info = IndustryInfo.get() for _, code in df_info.code.iteritems(): data = CIndex(code).get_k_data(date=_date) df = df.append(data) df = df.reset_index(drop=True) df['name'] = df_info['name'] df = df.sort_values(by='amount', ascending=False) df = df.reset_index(drop=True) return df
class DataManager: def __init__(self, dbinfo=ct.DB_INFO, redis_host=None): self.dbinfo = dbinfo self.logger = getLogger(__name__) self.index_objs = dict() self.stock_objs = dict() self.updating_date = None self.combination_objs = dict() self.cal_client = CCalendar(dbinfo, redis_host) self.index_info_client = IndexInfo() self.cvaluation_client = CValuation() self.reviewer = CReivew(dbinfo, redis_host) self.comb_info_client = CombinationInfo(dbinfo, redis_host) self.stock_info_client = CStockInfo(dbinfo, redis_host) self.rindex_stock_data_client = RIndexStock(dbinfo, redis_host) self.industry_info_client = IndustryInfo(dbinfo, redis_host) self.rindustry_info_client = RIndexIndustryInfo(dbinfo, redis_host) self.animation_client = CAnimation(dbinfo, redis_host) self.subscriber = Subscriber() self.quote_handler = StockQuoteHandler() self.ticker_handler = TickerHandler() self.connect_client = StockConnect(market_from=ct.SH_MARKET_SYMBOL, market_to=ct.HK_MARKET_SYMBOL, dbinfo=dbinfo, redis_host=redis_host) self.margin_client = Margin(dbinfo=dbinfo, redis_host=redis_host) self.emotion_client = Emotion(dbinfo=dbinfo, redis_host=redis_host) self.sh_exchange_client = StockExchange(ct.SH_MARKET_SYMBOL) self.sz_exchange_client = StockExchange(ct.SZ_MARKET_SYMBOL) def is_collecting_time(self): now_time = datetime.now() _date = now_time.strftime('%Y-%m-%d') y, m, d = time.strptime(_date, "%Y-%m-%d")[0:3] aft_open_hour, aft_open_minute, aft_open_second = (17, 10, 00) aft_open_time = datetime(y, m, d, aft_open_hour, aft_open_minute, aft_open_second) aft_close_hour, aft_close_minute, aft_close_second = (23, 59, 59) aft_close_time = datetime(y, m, d, aft_close_hour, aft_close_minute, aft_close_second) #self.logger.info("collecting now time. open_time:%s < now_time:%s < close_time:%s" % (aft_open_time, now_time, aft_close_time)) return aft_open_time < now_time < aft_close_time def is_morning_time(self, now_time=datetime.now()): _date = now_time.strftime('%Y-%m-%d') y, m, d = time.strptime(_date, "%Y-%m-%d")[0:3] mor_open_hour, mor_open_minute, mor_open_second = (0, 0, 0) mor_open_time = datetime(y, m, d, mor_open_hour, mor_open_minute, mor_open_second) mor_close_hour, mor_close_minute, mor_close_second = (6, 30, 0) mor_close_time = datetime(y, m, d, mor_close_hour, mor_close_minute, mor_close_second) return mor_open_time < now_time < mor_close_time def collect_combination_runtime_data(self): def _combination_run(code_id): self.combination_objs[code_id].run() return (code_id, True) todo_iplist = list(self.combination_objs.keys()) return concurrent_run(_combination_run, todo_iplist, num=10) def collect_stock_runtime_data(self): if self.ticker_handler.empty(): return datas = self.ticker_handler.getQueue() while not datas.empty(): df = datas.get() df = df.set_index('time') df.index = pd.to_datetime(df.index) for code_str in set(df.code): code_id = code_str.split('.')[1] self.stock_objs[code_id].run(df.loc[df.code == code_str]) def init_real_stock_info(self): concerned_list = self.comb_info_client.get_concerned_list() prefix_concerned_list = [add_prifix(code) for code in concerned_list] ret = self.subscriber.subscribe(prefix_concerned_list, SubType.TICKER, self.ticker_handler) if 0 == ret: for code in concerned_list: if code not in self.stock_objs: self.stock_objs[code] = CStock(code, self.dbinfo, should_create_influxdb=True, should_create_mysqldb=True) return ret def init_index_info(self): index_list = ct.INDEX_DICT.keys() prefix_index_list = [add_index_prefix(code) for code in index_list] ret = self.subscriber.subscribe(prefix_index_list, SubType.QUOTE, self.quote_handler) if 0 != ret: self.logger.error("subscribe for index list failed") return ret for code in index_list: if code not in self.index_objs: self.index_objs[code] = CIndex(code, should_create_influxdb=True, should_create_mysqldb=True) return 0 def collect_index_runtime_data(self): if self.quote_handler.empty(): return datas = self.quote_handler.getQueue() while not datas.empty(): df = datas.get() df['time'] = df.data_date + ' ' + df.data_time df = df.drop(['data_date', 'data_time'], axis=1) df = df.set_index('time') df.index = pd.to_datetime(df.index) for code_str in set(df.code): code_id = code_str.split('.')[1] self.index_objs[code_id].run(df.loc[df.code == code_str]) def run(self, sleep_time): while True: try: self.logger.debug("enter run") if self.cal_client.is_trading_day(): if is_trading_time(): t_sleep_time = 1 if not self.subscriber.status(): self.subscriber.start() if 0 == self.init_index_info( ) and 0 == self.init_real_stock_info(): self.init_combination_info() else: self.logger.debug("enter stop subscriber") self.subscriber.stop() else: self.collect_stock_runtime_data() self.collect_combination_runtime_data() self.collect_index_runtime_data() self.animation_client.collect() else: t_sleep_time = sleep_time if self.subscriber.status(): self.subscriber.stop() else: t_sleep_time = sleep_time except Exception as e: #traceback.print_exc() self.logger.error(e) gevent.sleep(t_sleep_time) def set_update_info(self, step_length, exec_date, cdate=None, filename=ct.STEPFILE): step_info = dict() if cdate is None: cdate = 'none' step_info[cdate] = dict() step_info[cdate]['step'] = step_length step_info[cdate]['date'] = exec_date with open(filename, 'w') as f: json.dump(step_info, f) self.logger.info("finish step :%s" % step_length) def get_update_info(self, cdate=None, exec_date=None, filename=ct.STEPFILE): if cdate is None: cdate = 'none' if not os.path.exists(filename): return (0, exec_date) with open(filename, 'r') as f: step_info = json.load(f) if cdate not in step_info: return (0, exec_date) return (step_info[cdate]['step'], step_info[cdate]['date']) def bootstrap(self, cdate=None, exec_date=datetime.now().strftime('%Y-%m-%d'), ndays=3): finished_step, exec_date = self.get_update_info(cdate, exec_date) self.logger.info("enter updating.%s" % finished_step) if finished_step < 1: if not self.cal_client.init(): self.logger.error("cal client init failed") return False self.set_update_info(1, exec_date, cdate) if finished_step < 2: if not self.index_info_client.update(): self.logger.error("index info init failed") return False self.set_update_info(2, exec_date, cdate) if finished_step < 3: if not self.stock_info_client.update(): self.logger.error("stock info init failed") return False self.set_update_info(3, exec_date, cdate) if finished_step < 4: if not self.comb_info_client.update(): self.logger.error("comb info init failed") return False self.set_update_info(4, exec_date, cdate) if finished_step < 5: if not self.industry_info_client.update(): self.logger.error("industry info init failed") return False self.set_update_info(5, exec_date, cdate) if finished_step < 6: if not self.init_tdx_index_info(cdate): self.logger.error("init tdx index info failed") return False self.set_update_info(6, exec_date, cdate) if finished_step < 7: if not self.sh_exchange_client.update(exec_date, num=ndays): self.logger.error("sh exchange update failed") return False self.set_update_info(7, exec_date, cdate) if finished_step < 8: if not self.sz_exchange_client.update(exec_date, num=ndays): self.logger.error("sz exchange update failed") return False self.set_update_info(8, exec_date, cdate) if finished_step < 9: if not self.init_index_components_info(exec_date): self.logger.error("init index components info failed") return False self.set_update_info(9, exec_date, cdate) if finished_step < 10: if not self.init_industry_info(cdate): self.logger.error("init industry info failed") return False self.set_update_info(10, exec_date, cdate) if finished_step < 11: if not self.rindustry_info_client.update(exec_date, num=ndays): self.logger.error("init %s rindustry info failed" % exec_date) return False self.set_update_info(11, exec_date, cdate) if finished_step < 12: if not self.init_yesterday_hk_info(exec_date, num=ndays): self.logger.error("init yesterday hk info failed") return False self.set_update_info(12, exec_date, cdate) if finished_step < 13: if not self.margin_client.update(exec_date, num=ndays): self.logger.error("init yesterday margin failed") return False self.set_update_info(13, exec_date, cdate) if finished_step < 14: if not self.init_stock_info(cdate): self.logger.error("init stock info set failed") return False self.set_update_info(14, exec_date, cdate) if finished_step < 15: if not self.init_base_float_profit(): self.logger.error("init base float profit for all stock") return False self.set_update_info(15, exec_date, cdate) if finished_step < 16: if not self.init_valuation_info(cdate): self.logger.error("init stock valuation info failed") return False self.set_update_info(16, exec_date, cdate) if finished_step < 17: if not self.init_rvaluation_info(cdate): self.logger.error("init r stock valuation info failed") return False self.set_update_info(17, exec_date, cdate) if finished_step < 18: if not self.init_rindex_valuation_info(cdate): self.logger.error("init r index valuation info failed") return False self.set_update_info(18, exec_date, cdate) if finished_step < 19: if not self.rindex_stock_data_client.update(exec_date, num=ndays): self.logger.error("rstock data set failed") return False self.set_update_info(19, exec_date, cdate) if finished_step < 20: if not self.set_bull_stock_ratio(exec_date, num=ndays): self.logger.error("bull ratio set failed") return False self.set_update_info(20, exec_date, cdate) self.logger.info("updating succeed") return True def clear_network_env(self): kill_process("google-chrome") kill_process("renderer") kill_process("Xvfb") kill_process("zygote") kill_process("defunct") kill_process("show-component-extension-options") def update(self, sleep_time): succeed = False while True: self.logger.debug("enter daily update process. %s" % datetime.now().strftime('%Y-%m-%d %H:%M:%S')) try: if self.cal_client.is_trading_day(): #self.logger.info("is trading day. %s, succeed:%s" % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), succeed)) if self.is_collecting_time(): self.logger.debug( "enter collecting time. %s, succeed:%s" % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), succeed)) if not succeed: self.clear_network_env() mdate = datetime.now().strftime('%Y-%m-%d') ndate = get_latest_data_date() if ndate is not None: if ndate >= transfer_date_string_to_int(mdate): if self.updating_date is None: self.updating_date = mdate succeed = self.bootstrap( cdate=self.updating_date, exec_date=self.updating_date) if succeed: self.updating_date = None else: self.logger.debug("%s is older for %s" % (ndate, mdate)) else: succeed = False gevent.sleep(sleep_time) except Exception as e: time.sleep(1) self.logger.error(e) def init_combination_info(self): trading_info = self.comb_info_client.get() for _, code_id in trading_info['code'].iteritems(): if str(code_id) not in self.combination_objs: self.combination_objs[str(code_id)] = Combination( code_id, self.dbinfo) def init_base_float_profit(self): def _set_base_float_profit(code_id): if CStock(code_id).set_base_floating_profit(): self.logger.info("%s set base float profit success" % code_id) return (code_id, True) else: self.logger.error("%s set base float profit failed" % code_id) return (code_id, False) df = self.stock_info_client.get() if df.empty: return False failed_list = df.code.tolist() return process_concurrent_run(_set_base_float_profit, failed_list, num=8) def init_rindex_valuation_info(self, cdate): for code in ct.INDEX_DICT: if not self.cvaluation_client.set_index_valuation(code, cdate): self.logger.error( "{} set {} data for rvaluation failed".format(code, mdate)) return False return True def init_rvaluation_info(self, cdate=None): def cget(mdate, code): return code, CStock(code).get_val_data(mdate) df = self.stock_info_client.get() code_list = df.code.tolist() try: obj_pool = Pool(5000) all_df = pd.DataFrame() cfunc = partial(cget, cdate) for code_data in obj_pool.imap_unordered(cfunc, code_list): if code_data[1] is not None and not code_data[1].empty: tem_df = code_data[1] tem_df['code'] = code_data[0] all_df = all_df.append(tem_df) obj_pool.join(timeout=5) obj_pool.kill() all_df = all_df.reset_index(drop=True) file_name = "{}.csv".format(cdate) file_path = Path(ct.RVALUATION_DIR) / file_name all_df.to_csv(file_path, index=False, header=True, mode='w', encoding='utf8') return True except Exception as e: self.logger.error(e) return False def init_valuation_info(self, cdate=None): df = self.stock_info_client.get() code_list = df['code'].tolist() time2market_list = df['timeToMarket'].tolist() code2timedict = dict(zip(code_list, time2market_list)) cfun = partial(self.cvaluation_client.set_stock_valuation, code2timedict, cdate) return process_concurrent_run(cfun, code_list, num=15, black_list=list()) def init_stock_info(self, cdate=None): def _set_stock_info(mdate, bonus_info, index_info, code_id): try: if CStock(code_id).set_k_data(bonus_info, index_info, mdate): self.logger.info("%s set k data success for date:%s", code_id, mdate) return (code_id, True) else: self.logger.error("%s set k data failed for date:%s", code_id, mdate) return (code_id, False) except Exception as e: self.logger.error("%s set k data for date %s exception:%s", code_id, mdate, e) return (code_id, False) #get stock bonus info bonus_info = pd.read_csv("/data/tdx/base/bonus.csv", sep=',', dtype={ 'code': str, 'market': int, 'type': int, 'money': float, 'price': float, 'count': float, 'rate': float, 'date': int }) index_info = CIndex('000001').get_k_data() if index_info is None or index_info.empty: return False df = self.stock_info_client.get() if df.empty: return False failed_list = df.code.tolist() if cdate is None: cfunc = partial(_set_stock_info, cdate, bonus_info, index_info) return process_concurrent_run(cfunc, failed_list, num=8) else: cfunc = partial(_set_stock_info, cdate, bonus_info, index_info) succeed = True if not process_concurrent_run(cfunc, failed_list, num=8): succeed = False return succeed #start_date = get_day_nday_ago(cdate, num = 4, dformat = "%Y-%m-%d") #for mdate in get_dates_array(start_date, cdate, asending = True): # if self.cal_client.is_trading_day(mdate): # self.logger.info("start recording stock info: %s", mdate) # cfunc = partial(_set_stock_info, mdate, bonus_info, index_info) # if not process_concurrent_run(cfunc, failed_list, num = 500): # self.logger.error("compute stock info for %s failed", mdate) # return False #return True def init_industry_info(self, cdate, num=1): def _set_industry_info(cdate, code_id): return (code_id, CIndex(code_id).set_k_data(cdate)) df = self.industry_info_client.get() if cdate is None: cfunc = partial(_set_industry_info, cdate) return concurrent_run(cfunc, df.code.tolist(), num=5) else: succeed = True start_date = get_day_nday_ago(cdate, num=num, dformat="%Y-%m-%d") for mdate in get_dates_array(start_date, cdate, asending=True): if self.cal_client.is_trading_day(mdate): cfunc = partial(_set_industry_info, mdate) if not concurrent_run(cfunc, df.code.tolist(), num=5): succeed = False return succeed def init_yesterday_hk_info(self, cdate, num): succeed = True for data in ((ct.SH_MARKET_SYMBOL, ct.HK_MARKET_SYMBOL), (ct.SZ_MARKET_SYMBOL, ct.HK_MARKET_SYMBOL)): if not self.connect_client.set_market(data[0], data[1]): self.logger.error("connect_client for %s failed" % data) succeed = False continue if not self.connect_client.update(cdate, num=num): succeed = False self.connect_client.close() self.connect_client.quit() return succeed def get_concerned_index_codes(self): index_codes = list(ct.INDEX_DICT.keys()) #添加MSCI板块 index_codes.append('880883') return index_codes def init_index_components_info(self, cdate=None): if cdate is None: cdate = datetime.now().strftime('%Y-%m-%d') def _set_index_info(code_id): if code_id in self.index_objs: _obj = self.index_objs[code_id] else: _obj = CIndex(code_id) if code_id in list( ct.INDEX_DICT.keys()) else TdxFgIndex(code_id) return (code_id, _obj.set_components_data(cdate)) index_codes = self.get_concerned_index_codes() return concurrent_run(_set_index_info, index_codes, num=10) def set_bull_stock_ratio(self, cdate, num=10): def _set_bull_stock_ratio(code_id): return (code_id, BullStockRatio(code_id).update(cdate, num)) index_codes = self.get_concerned_index_codes() return concurrent_run(_set_bull_stock_ratio, index_codes) def init_tdx_index_info(self, cdate=None, num=1): def _set_index_info(cdate, code_id): try: if code_id in self.index_objs: _obj = self.index_objs[code_id] else: _obj = CIndex(code_id) if code_id in list( ct.TDX_INDEX_DICT.keys()) else TdxFgIndex(code_id) return (code_id, _obj.set_k_data(cdate)) except Exception as e: self.logger.error(e) return (code_id, False) #index_code_list = self.get_concerned_index_codes() index_code_list = list(ct.TDX_INDEX_DICT.keys()) if cdate is None: cfunc = partial(_set_index_info, cdate) return concurrent_run(cfunc, index_code_list, num=5) else: succeed = True start_date = get_day_nday_ago(cdate, num=num, dformat="%Y-%m-%d") for mdate in get_dates_array(start_date, cdate, asending=True): if self.cal_client.is_trading_day(mdate): cfunc = partial(_set_index_info, mdate) if not concurrent_run(cfunc, index_code_list, num=5): succeed = False return succeed
class DataManager: def __init__(self, dbinfo=ct.DB_INFO, redis_host=None): self.dbinfo = dbinfo self.logger = getLogger(__name__) self.index_objs = dict() self.stock_objs = dict() self.combination_objs = dict() self.cal_client = CCalendar(dbinfo, redis_host) self.index_info_client = IndexInfo() self.comb_info_client = CombinationInfo(dbinfo, redis_host) self.stock_info_client = CStockInfo(dbinfo, redis_host) self.rindex_stock_data_client = RIndexStock(dbinfo, redis_host) self.industry_info_client = IndustryInfo(dbinfo, redis_host) self.rindustry_info_client = RIndexIndustryInfo(dbinfo, redis_host) self.limit_client = CLimit(dbinfo, redis_host) self.animation_client = CAnimation(dbinfo, redis_host) self.subscriber = Subscriber() self.quote_handler = StockQuoteHandler() self.ticker_handler = TickerHandler() self.connect_client = StockConnect(market_from=ct.SH_MARKET_SYMBOL, market_to=ct.HK_MARKET_SYMBOL, dbinfo=dbinfo, redis_host=redis_host) self.margin_client = Margin(dbinfo=dbinfo, redis_host=redis_host) self.emotion_client = Emotion(dbinfo=dbinfo, redis_host=redis_host) self.sh_exchange_client = StockExchange(ct.SH_MARKET_SYMBOL) self.sz_exchange_client = StockExchange(ct.SZ_MARKET_SYMBOL) def is_collecting_time(self, now_time=datetime.now()): _date = now_time.strftime('%Y-%m-%d') y, m, d = time.strptime(_date, "%Y-%m-%d")[0:3] aft_open_hour, aft_open_minute, aft_open_second = (19, 00, 00) aft_open_time = datetime(y, m, d, aft_open_hour, aft_open_minute, aft_open_second) aft_close_hour, aft_close_minute, aft_close_second = (23, 59, 59) aft_close_time = datetime(y, m, d, aft_close_hour, aft_close_minute, aft_close_second) return aft_open_time < now_time < aft_close_time def is_morning_time(self, now_time=datetime.now()): _date = now_time.strftime('%Y-%m-%d') y, m, d = time.strptime(_date, "%Y-%m-%d")[0:3] mor_open_hour, mor_open_minute, mor_open_second = (0, 0, 0) mor_open_time = datetime(y, m, d, mor_open_hour, mor_open_minute, mor_open_second) mor_close_hour, mor_close_minute, mor_close_second = (6, 30, 0) mor_close_time = datetime(y, m, d, mor_close_hour, mor_close_minute, mor_close_second) return mor_open_time < now_time < mor_close_time def collect_combination_runtime_data(self): def _combination_run(code_id): self.combination_objs[code_id].run() return (code_id, True) todo_iplist = list(self.combination_objs.keys()) return concurrent_run(_combination_run, todo_iplist, num=10) def collect_stock_runtime_data(self): if self.ticker_handler.empty(): return datas = self.ticker_handler.getQueue() while not datas.empty(): df = datas.get() df = df.set_index('time') df.index = pd.to_datetime(df.index) for code_str in set(df.code): code_id = code_str.split('.')[1] self.stock_objs[code_id].run(df.loc[df.code == code_str]) def init_real_stock_info(self): concerned_list = self.comb_info_client.get_concerned_list() prefix_concerned_list = [add_prifix(code) for code in concerned_list] ret = self.subscriber.subscribe(prefix_concerned_list, SubType.TICKER, self.ticker_handler) if 0 == ret: for code in concerned_list: if code not in self.stock_objs: self.stock_objs[code] = CStock(code, self.dbinfo, should_create_influxdb=True, should_create_mysqldb=True) return ret def init_index_info(self): index_list = ct.INDEX_DICT.keys() prefix_index_list = [add_index_prefix(code) for code in index_list] ret = self.subscriber.subscribe(prefix_index_list, SubType.QUOTE, self.quote_handler) if 0 != ret: self.logger.error("subscribe for index list failed") return ret for code in index_list: if code not in self.index_objs: self.index_objs[code] = CIndex(code, should_create_influxdb=True, should_create_mysqldb=True) def collect_index_runtime_data(self): if self.quote_handler.empty(): return datas = self.quote_handler.getQueue() while not datas.empty(): df = datas.get() df['time'] = df.data_date + ' ' + df.data_time df = df.drop(['data_date', 'data_time'], axis=1) df = df.set_index('time') df.index = pd.to_datetime(df.index) for code_str in set(df.code): code_id = code_str.split('.')[1] self.index_objs[code_id].run(df.loc[df.code == code_str]) def run(self, sleep_time): while True: try: if self.cal_client.is_trading_day(): if is_trading_time(): sleep_time = 1 if not self.subscriber.status(): self.subscriber.start() if 0 == self.init_index_info( ) and 0 == self.init_real_stock_info(): self.init_combination_info() else: self.logger.debug("enter stop dict time") self.subscriber.stop() else: self.collect_stock_runtime_data() self.collect_combination_runtime_data() self.collect_index_runtime_data() self.animation_client.collect() else: sleep_time = 60 if self.subscriber.status(): self.subscriber.stop() except Exception as e: traceback.print_exc() self.logger.error(e) time.sleep(sleep_time) def set_update_info(self, step_length, exec_date, cdate=None, filename=ct.STEPFILE): step_info = dict() if cdate is None: cdate = 'none' step_info[cdate] = dict() step_info[cdate]['step'] = step_length step_info[cdate]['date'] = exec_date with open(filename, 'w') as f: json.dump(step_info, f) self.logger.info("finish step :%s" % step_length) def get_update_info(self, cdate=None, exec_date=None, filename=ct.STEPFILE): if cdate is None: cdate = 'none' if not os.path.exists(filename): return (0, exec_date) with open(filename, 'r') as f: step_info = json.load(f) if cdate not in step_info: return (0, exec_date) return (step_info[cdate]['step'], step_info[cdate]['date']) def bootstrap(self, cdate=None, exec_date=datetime.now().strftime('%Y-%m-%d')): finished_step, exec_date = self.get_update_info(cdate, exec_date) self.logger.info("enter updating.%s" % finished_step) if finished_step < 1: if not self.cal_client.init(): self.logger.error("cal_client init failed") return False self.set_update_info(1, exec_date, cdate) if finished_step < 2: if not self.index_info_client.update(): self.logger.error("index_info init failed") return False self.set_update_info(2, exec_date, cdate) if finished_step < 3: if not self.stock_info_client.update(): self.logger.error("stock_info init failed") return False self.set_update_info(3, exec_date, cdate) if finished_step < 4: if not self.comb_info_client.update(): self.logger.error("comb_info init failed") return False self.set_update_info(4, exec_date, cdate) if finished_step < 5: if not self.industry_info_client.update(): self.logger.error("industry_info init failed") return False self.set_update_info(5, exec_date, cdate) if finished_step < 6: if not self.download_and_extract(exec_date): self.logger.error("download_and_extract failed") return False self.set_update_info(6, exec_date, cdate) if finished_step < 7: if not self.init_tdx_index_info(cdate): self.logger.error("init_tdx_index_info failed") return False self.set_update_info(7, exec_date, cdate) if finished_step < 8: if not self.sh_exchange_client.update(exec_date, num=30): self.logger.error("sh exchange update failed") return False self.set_update_info(8, exec_date, cdate) if finished_step < 9: if not self.sz_exchange_client.update(exec_date, num=30): self.logger.error("sz exchange update failed") return False self.set_update_info(9, exec_date, cdate) if finished_step < 10: if not self.init_index_components_info(exec_date): self.logger.error("init index components info failed") return False self.set_update_info(10, exec_date, cdate) if finished_step < 11: if not self.init_industry_info(cdate): self.logger.error("init_industry_info failed") return False self.set_update_info(11, exec_date, cdate) if finished_step < 12: if not self.rindustry_info_client.update(exec_date): self.logger.error("init %s rindustry info failed" % exec_date) return False self.set_update_info(12, exec_date, cdate) if finished_step < 13: if not self.limit_client.update(exec_date): self.logger.error("init_limit_info failed") return False self.set_update_info(13, exec_date, cdate) if finished_step < 14: if not self.init_yesterday_hk_info(exec_date): self.logger.error("init_yesterday_hk_info failed") return False self.set_update_info(14, exec_date, cdate) if finished_step < 15: if not self.margin_client.update(exec_date): self.logger.error("init_yesterday_margin failed") return False self.set_update_info(15, exec_date, cdate) if finished_step < 16: if not self.init_stock_info(cdate): self.logger.error("init_stock_info set failed") return False self.set_update_info(16, exec_date, cdate) if finished_step < 17: if not self.init_base_float_profit(): self.logger.error("init base float profit for all stock") return False self.set_update_info(17, exec_date, cdate) if finished_step < 18: if not self.rindex_stock_data_client.update(exec_date, num=300): self.logger.error("rindex_stock_data set failed") return False self.set_update_info(18, exec_date, cdate) self.logger.info("updating succeed") return True def update(self, sleep_time): while True: self.logger.info("enter daily update process. %s" % datetime.now().strftime('%Y-%m-%d %H:%M:%S')) try: if self.cal_client.is_trading_day(): self.logger.info( "is trading day. %s" % datetime.now().strftime('%Y-%m-%d %H:%M:%S')) if self.is_collecting_time(): self.logger.info( "is collecting time. %s" % datetime.now().strftime('%Y-%m-%d %H:%M:%S')) self.bootstrap( cdate=datetime.now().strftime('%Y-%m-%d')) except Exception as e: kill_process("google-chrome") kill_process("renderer") kill_process("Xvfb") kill_process("zygote") kill_process("defunct") kill_process("show-component-extension-options") self.logger.error(e) time.sleep(sleep_time) def init_combination_info(self): trading_info = self.comb_info_client.get() for _, code_id in trading_info['code'].iteritems(): if str(code_id) not in self.combination_objs: self.combination_objs[str(code_id)] = Combination( code_id, self.dbinfo) def init_base_float_profit(self): def _set_base_float_profit(code_id): return (code_id, True) if CStock(code_id).set_base_floating_profit() else ( code_id, False) failed_list = self.stock_info_client.get().code.tolist() return process_concurrent_run(_set_base_float_profit, failed_list, num=500) def init_stock_info(self, cdate=None): def _set_stock_info(_date, bonus_info, index_info, code_id): try: if CStock(code_id).set_k_data(bonus_info, index_info, _date): self.logger.info("%s set k data success" % code_id) return (code_id, True) else: self.logger.error("%s set k data failed" % code_id) return (code_id, False) except Exception as e: self.logger.error("%s set k data exception:%s" % (code_id, e)) return (code_id, False) #get stock bonus info bonus_info = pd.read_csv("/data/tdx/base/bonus.csv", sep=',', dtype={ 'code': str, 'market': int, 'type': int, 'money': float, 'price': float, 'count': float, 'rate': float, 'date': int }) index_info = CIndex('000001').get_k_data() if index_info is None or index_info.empty: return False df = self.stock_info_client.get() failed_list = df.code.tolist() if cdate is None: cfunc = partial(_set_stock_info, cdate, bonus_info, index_info) return process_concurrent_run(cfunc, failed_list, num=5) else: succeed = True start_date = get_day_nday_ago(cdate, num=10, dformat="%Y-%m-%d") for mdate in get_dates_array(start_date, cdate, asending=True): if self.cal_client.is_trading_day(mdate): cfunc = partial(_set_stock_info, mdate, bonus_info, index_info) if not process_concurrent_run(cfunc, failed_list, num=500): succeed = False return succeed def init_industry_info(self, cdate): def _set_industry_info(cdate, code_id): return (code_id, CIndex(code_id).set_k_data(cdate)) df = self.industry_info_client.get() if cdate is None: cfunc = partial(_set_industry_info, cdate) return concurrent_run(cfunc, df.code.tolist(), num=5) else: succeed = True start_date = get_day_nday_ago(cdate, num=30, dformat="%Y-%m-%d") for mdate in get_dates_array(start_date, cdate, asending=True): if self.cal_client.is_trading_day(mdate): cfunc = partial(_set_industry_info, mdate) if not concurrent_run(cfunc, df.code.tolist(), num=5): succeed = False return succeed def init_yesterday_hk_info(self, cdate): succeed = True for data in ((ct.SH_MARKET_SYMBOL, ct.HK_MARKET_SYMBOL), (ct.SZ_MARKET_SYMBOL, ct.HK_MARKET_SYMBOL)): if not self.connect_client.set_market(data[0], data[1]): self.logger.error("connect_client for %s failed" % data) succeed = False continue if not self.connect_client.update(cdate): succeed = False self.connect_client.close() self.connect_client.quit() kill_process("zygote") kill_process("defunct") kill_process("show-component-extension-options") return succeed def init_index_components_info(self, cdate=None): if cdate is None: cdate = datetime.now().strftime('%Y-%m-%d') def _set_index_info(code_id): _obj = self.index_objs[ code_id] if code_id in self.index_objs else CIndex(code_id) return (code_id, _obj.set_components_data(cdate)) return concurrent_run(_set_index_info, list(ct.INDEX_DICT.keys()), num=10) def init_tdx_index_info(self, cdate=None): def _set_index_info(cdate, code_id): try: _obj = self.index_objs[ code_id] if code_id in self.index_objs else CIndex(code_id) return (code_id, _obj.set_k_data(cdate)) except Exception as e: self.logger.error(e) return (code_id, False) if cdate is None: cfunc = partial(_set_index_info, cdate) return concurrent_run(cfunc, list(ct.TDX_INDEX_DICT.keys()), num=5) else: succeed = True start_date = get_day_nday_ago(cdate, num=30, dformat="%Y-%m-%d") for mdate in get_dates_array(start_date, cdate, asending=True): if self.cal_client.is_trading_day(mdate): cfunc = partial(_set_index_info, mdate) if not concurrent_run( cfunc, list(ct.TDX_INDEX_DICT.keys()), num=5): succeed = False return succeed def download_and_extract(self, cdate): try: if not download(ct.ZIP_DIR, cdate): return False list_files = os.listdir(ct.ZIP_DIR) for filename in list_files: if not filename.startswith('.'): file_path = os.path.join(ct.ZIP_DIR, filename) if os.path.exists(file_path): unzip(file_path, ct.TIC_DIR) return True except Exception as e: self.logger.error(e) return False
def relation_plot(self, df, good_list): close_price_list = [ df[df.code == code].close.tolist() for code in good_list ] close_prices = np.vstack(close_price_list) open_price_list = [ df[df.code == code].open.tolist() for code in good_list ] open_prices = np.vstack(open_price_list) # the daily variations of the quotes are what carry most information variation = (close_prices - open_prices) * 100 / open_prices logger.info("get variation succeed") # ############################################################################# # learn a graphical structure from the correlations edge_model = covariance.GraphLassoCV() # standardize the time series: using correlations rather than covariance is more efficient for structure recovery X = variation.copy().T X /= X.std(axis=0) edge_model.fit(X) logger.info("mode compute succeed") # ############################################################################# # cluster using affinity propagation _, labels = cluster.affinity_propagation(edge_model.covariance_) n_labels = labels.max() code_list = np.array(good_list) industry_dict = dict() industry_df_info = IndustryInfo.get() for index, name in industry_df_info.name.iteritems(): content = industry_df_info.loc[index]['content'] a_code_list = json.loads(content) for code in a_code_list: industry_dict[code] = name cluster_dict = dict() for i in range(n_labels + 1): cluster_dict[i] = code_list[labels == i] name_list = [ CStockInfo.get(code, 'name') for code in code_list[labels == i] ] logger.info('cluster code %i: %s' % ((i + 1), ', '.join(name_list))) cluster_info = dict() for group, _code_list in cluster_dict.items(): for code in _code_list: iname = industry_dict[code] if group not in cluster_info: cluster_info[group] = set() cluster_info[group].add(iname) logger.info('cluster inustry %i: %s' % ((i + 1), ', '.join(list(cluster_info[group])))) # ############################################################################# # find a low-dimension embedding for visualization: find the best position of # the nodes (the stocks) on a 2D plane # we use a dense eigen_solver to achieve reproducibility (arpack is # initiated with random vectors that we don't control). In addition, we # use a large number of neighbors to capture the large-scale structure. node_position_model = manifold.LocallyLinearEmbedding( n_components=2, eigen_solver='dense', n_neighbors=6) embedding = node_position_model.fit_transform(X.T).T # ############################################################################# # visualizatio plt.figure(1, facecolor='w', figsize=(10, 8)) plt.clf() ax = plt.axes([0., 0., 1., 1.]) plt.axis('off') # display a graph of the partial correlations partial_correlations = edge_model.precision_.copy() d = 1 / np.sqrt(np.diag(partial_correlations)) partial_correlations *= d partial_correlations *= d[:, np.newaxis] non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02) # plot the nodes using the coordinates of our embedding plt.scatter(embedding[0], embedding[1], s=100 * d**2, c=labels, cmap=plt.cm.nipy_spectral) # plot the edges start_idx, end_idx = np.where(non_zero) # a sequence of (*line0*, *line1*, *line2*), where:: linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[embedding[:, start], embedding[:, stop]] for start, stop in zip(start_idx, end_idx)] values = np.abs(partial_correlations[non_zero]) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, .7 * values.max())) lc.set_array(values) lc.set_linewidths(15 * values) ax.add_collection(lc) # add a label to each node. The challenge here is that we want to position the labels to avoid overlap with other labels for index, (name, label, (x, y)) in enumerate(zip(code_list, labels, embedding.T)): dx = x - embedding[0] dx[index] = 1 dy = y - embedding[1] dy[index] = 1 this_dx = dx[np.argmin(np.abs(dy))] this_dy = dy[np.argmin(np.abs(dx))] if this_dx > 0: horizontalalignment = 'left' x = x + .002 else: horizontalalignment = 'right' x = x - .002 if this_dy > 0: verticalalignment = 'bottom' y = y + .002 else: verticalalignment = 'top' y = y - .002 plt.text(x, y, name, size=10, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, bbox=dict(facecolor='w', edgecolor=plt.cm.nipy_spectral(label / float(n_labels)), alpha=.6)) plt.xlim( embedding[0].min() - .15 * embedding[0].ptp(), embedding[0].max() + .10 * embedding[0].ptp(), ) plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(), embedding[1].max() + .03 * embedding[1].ptp()) plt.savefig('/tmp/relation.png', dpi=1000)