Exemplo n.º 1
0
def choose_plate(edate = '2016-10-11', ndays = 90):
    rindustry_info_client = RIndexIndustryInfo(redis_host='127.0.0.1')
    today_industry_df = rindustry_info_client.get_k_data(edate)
    pchange_df = today_industry_df.sort_values(by = 'pchange', ascending = False).head(3)
    mchange_df = today_industry_df.sort_values(by = 'mchange', ascending = False).head(3)
    plate_code_list = list(set(pchange_df.code.tolist()).intersection(pchange_df.code.tolist()))
    if len(plate_code_list) == 0: 
        logger.info("no interested plate for date:%s" % edate)
        return list()
    sdate = get_day_nday_ago(edate, ndays, '%Y-%m-%d')
    #get sh index data
    sh_index_obj = CIndex('000001', redis_host='127.0.0.1')
    sh_index_info = sh_index_obj.get_k_data_in_range(sdate, edate)
    sh_index_pchange = 100 * (sh_index_info.loc[len(sh_index_info) - 1, 'close'] -  sh_index_info.loc[0, 'preclose']) / sh_index_info.loc[0, 'preclose']
    #get industry data
    all_industry_df = rindustry_info_client.get_k_data_in_range(sdate, edate)
    all_industry_df = all_industry_df.loc[all_industry_df.code.isin(plate_code_list)]
    industry_static_info = DataFrame(columns={'code', 'sai', 'pchange', ct.KL, ct.QL, ct.JL, ct.FL})
    #choose better industry
    redisobj = create_redis_obj("127.0.0.1") 
    today_industry_info = IndustryInfo.get(redisobj)
    for code, industry in all_industry_df.groupby('code'):
        industry = industry.reset_index(drop = True)
        industry['sri'] = 0
        industry['sri'] = industry['pchange'] - sh_index_info['pchange']
        industry['sai'] = 0
        industry.at[(industry.pchange > 0) & (sh_index_info.pchange < 0), 'sai'] = industry.loc[(industry.pchange > 0) & (sh_index_info.pchange < 0), 'sri']
        industry_sai = len(industry.loc[industry.sai > 0])
        industry_pchange = 100 * (industry.loc[len(industry) - 1, 'close'] -  industry.loc[0, 'preclose']) / industry.loc[0, 'preclose']
        code_list = json.loads(today_industry_info.loc[today_industry_info.code == code, 'content'].values[0])
        info_dict, good_code_list = choose_stock(code_list, sdate, edate)
        industry_static_info = industry_static_info.append(DataFrame([[code, industry_sai, industry_pchange, info_dict[ct.KL], info_dict[ct.QL], info_dict[ct.JL], info_dict[ct.FL]]], columns = ['code', 'sai', 'pchange', ct.KL, ct.QL, ct.JL, ct.FL]), sort = 'True')
    industry_static_info = industry_static_info.reset_index(drop = True)
    industry_static_info = industry_static_info.sort_values(by=['pchange'], ascending=False)
    return good_code_list
Exemplo n.º 2
0
 def generate_data(self, cdate):
     good_list = list()
     obj_pool = Pool(500)
     all_df = pd.DataFrame()
     industry_info = IndustryInfo.get(self.redis)
     failed_list = industry_info.code.tolist()
     cfunc = partial(self.get_industry_data, cdate)
     failed_count = 0
     while len(failed_list) > 0:
         is_failed = False
         self.logger.debug("restart failed ip len(%s)" % len(failed_list))
         for code_data in obj_pool.imap_unordered(cfunc, failed_list):
             if code_data[1] is not None:
                 tem_df = code_data[1]
                 tem_df['code'] = code_data[0]
                 all_df = all_df.append(tem_df)
                 failed_list.remove(code_data[0])
             else:
                 is_failed = True
         if is_failed:
             failed_count += 1
             if failed_count > 10:
                 self.logger.info("%s rindustry init failed" % failed_list)
                 return pd.DataFrame()
             time.sleep(10)
     obj_pool.join(timeout=5)
     obj_pool.kill()
     self.mysql_client.changedb(self.get_dbname())
     if all_df.empty: return all_df
     all_df = all_df.reset_index(drop=True)
     return all_df
Exemplo n.º 3
0
 def get_industry_data(self, cdate):
     ri = RIndexIndustryInfo()
     df = ri.get_k_data(cdate)
     if df.empty: return df
     df = df.reset_index(drop=True)
     df = df.sort_values(by='amount', ascending=False)
     df['money_change'] = (df['amount'] - df['preamount']) / 1e8
     industry_info = IndustryInfo.get()
     df = pd.merge(df, industry_info, how='left', on=['code'])
     return df
Exemplo n.º 4
0
 def get_industry_data(self, _date):
     df = pd.DataFrame()
     df_info = IndustryInfo.get()
     for _, code in df_info.code.iteritems():
         data = CIndex(code).get_k_data(date=_date)
         df = df.append(data)
         df = df.reset_index(drop=True)
     df['name'] = df_info['name']
     df = df.sort_values(by='amount', ascending=False)
     df = df.reset_index(drop=True)
     return df
Exemplo n.º 5
0
class DataManager:
    def __init__(self, dbinfo=ct.DB_INFO, redis_host=None):
        self.dbinfo = dbinfo
        self.logger = getLogger(__name__)
        self.index_objs = dict()
        self.stock_objs = dict()
        self.updating_date = None
        self.combination_objs = dict()
        self.cal_client = CCalendar(dbinfo, redis_host)
        self.index_info_client = IndexInfo()
        self.cvaluation_client = CValuation()
        self.reviewer = CReivew(dbinfo, redis_host)
        self.comb_info_client = CombinationInfo(dbinfo, redis_host)
        self.stock_info_client = CStockInfo(dbinfo, redis_host)
        self.rindex_stock_data_client = RIndexStock(dbinfo, redis_host)
        self.industry_info_client = IndustryInfo(dbinfo, redis_host)
        self.rindustry_info_client = RIndexIndustryInfo(dbinfo, redis_host)
        self.animation_client = CAnimation(dbinfo, redis_host)
        self.subscriber = Subscriber()
        self.quote_handler = StockQuoteHandler()
        self.ticker_handler = TickerHandler()
        self.connect_client = StockConnect(market_from=ct.SH_MARKET_SYMBOL,
                                           market_to=ct.HK_MARKET_SYMBOL,
                                           dbinfo=dbinfo,
                                           redis_host=redis_host)
        self.margin_client = Margin(dbinfo=dbinfo, redis_host=redis_host)
        self.emotion_client = Emotion(dbinfo=dbinfo, redis_host=redis_host)
        self.sh_exchange_client = StockExchange(ct.SH_MARKET_SYMBOL)
        self.sz_exchange_client = StockExchange(ct.SZ_MARKET_SYMBOL)

    def is_collecting_time(self):
        now_time = datetime.now()
        _date = now_time.strftime('%Y-%m-%d')
        y, m, d = time.strptime(_date, "%Y-%m-%d")[0:3]
        aft_open_hour, aft_open_minute, aft_open_second = (17, 10, 00)
        aft_open_time = datetime(y, m, d, aft_open_hour, aft_open_minute,
                                 aft_open_second)
        aft_close_hour, aft_close_minute, aft_close_second = (23, 59, 59)
        aft_close_time = datetime(y, m, d, aft_close_hour, aft_close_minute,
                                  aft_close_second)
        #self.logger.info("collecting now time. open_time:%s < now_time:%s < close_time:%s" % (aft_open_time, now_time, aft_close_time))
        return aft_open_time < now_time < aft_close_time

    def is_morning_time(self, now_time=datetime.now()):
        _date = now_time.strftime('%Y-%m-%d')
        y, m, d = time.strptime(_date, "%Y-%m-%d")[0:3]
        mor_open_hour, mor_open_minute, mor_open_second = (0, 0, 0)
        mor_open_time = datetime(y, m, d, mor_open_hour, mor_open_minute,
                                 mor_open_second)
        mor_close_hour, mor_close_minute, mor_close_second = (6, 30, 0)
        mor_close_time = datetime(y, m, d, mor_close_hour, mor_close_minute,
                                  mor_close_second)
        return mor_open_time < now_time < mor_close_time

    def collect_combination_runtime_data(self):
        def _combination_run(code_id):
            self.combination_objs[code_id].run()
            return (code_id, True)

        todo_iplist = list(self.combination_objs.keys())
        return concurrent_run(_combination_run, todo_iplist, num=10)

    def collect_stock_runtime_data(self):
        if self.ticker_handler.empty(): return
        datas = self.ticker_handler.getQueue()
        while not datas.empty():
            df = datas.get()
            df = df.set_index('time')
            df.index = pd.to_datetime(df.index)
            for code_str in set(df.code):
                code_id = code_str.split('.')[1]
                self.stock_objs[code_id].run(df.loc[df.code == code_str])

    def init_real_stock_info(self):
        concerned_list = self.comb_info_client.get_concerned_list()
        prefix_concerned_list = [add_prifix(code) for code in concerned_list]
        ret = self.subscriber.subscribe(prefix_concerned_list, SubType.TICKER,
                                        self.ticker_handler)
        if 0 == ret:
            for code in concerned_list:
                if code not in self.stock_objs:
                    self.stock_objs[code] = CStock(code,
                                                   self.dbinfo,
                                                   should_create_influxdb=True,
                                                   should_create_mysqldb=True)
        return ret

    def init_index_info(self):
        index_list = ct.INDEX_DICT.keys()
        prefix_index_list = [add_index_prefix(code) for code in index_list]
        ret = self.subscriber.subscribe(prefix_index_list, SubType.QUOTE,
                                        self.quote_handler)
        if 0 != ret:
            self.logger.error("subscribe for index list failed")
            return ret
        for code in index_list:
            if code not in self.index_objs:
                self.index_objs[code] = CIndex(code,
                                               should_create_influxdb=True,
                                               should_create_mysqldb=True)
        return 0

    def collect_index_runtime_data(self):
        if self.quote_handler.empty(): return
        datas = self.quote_handler.getQueue()
        while not datas.empty():
            df = datas.get()
            df['time'] = df.data_date + ' ' + df.data_time
            df = df.drop(['data_date', 'data_time'], axis=1)
            df = df.set_index('time')
            df.index = pd.to_datetime(df.index)
            for code_str in set(df.code):
                code_id = code_str.split('.')[1]
                self.index_objs[code_id].run(df.loc[df.code == code_str])

    def run(self, sleep_time):
        while True:
            try:
                self.logger.debug("enter run")
                if self.cal_client.is_trading_day():
                    if is_trading_time():
                        t_sleep_time = 1
                        if not self.subscriber.status():
                            self.subscriber.start()
                            if 0 == self.init_index_info(
                            ) and 0 == self.init_real_stock_info():
                                self.init_combination_info()
                            else:
                                self.logger.debug("enter stop subscriber")
                                self.subscriber.stop()
                        else:
                            self.collect_stock_runtime_data()
                            self.collect_combination_runtime_data()
                            self.collect_index_runtime_data()
                            self.animation_client.collect()
                    else:
                        t_sleep_time = sleep_time
                        if self.subscriber.status():
                            self.subscriber.stop()
                else:
                    t_sleep_time = sleep_time
            except Exception as e:
                #traceback.print_exc()
                self.logger.error(e)
            gevent.sleep(t_sleep_time)

    def set_update_info(self,
                        step_length,
                        exec_date,
                        cdate=None,
                        filename=ct.STEPFILE):
        step_info = dict()
        if cdate is None: cdate = 'none'
        step_info[cdate] = dict()
        step_info[cdate]['step'] = step_length
        step_info[cdate]['date'] = exec_date
        with open(filename, 'w') as f:
            json.dump(step_info, f)
        self.logger.info("finish step :%s" % step_length)

    def get_update_info(self,
                        cdate=None,
                        exec_date=None,
                        filename=ct.STEPFILE):
        if cdate is None: cdate = 'none'
        if not os.path.exists(filename): return (0, exec_date)
        with open(filename, 'r') as f:
            step_info = json.load(f)
        if cdate not in step_info: return (0, exec_date)
        return (step_info[cdate]['step'], step_info[cdate]['date'])

    def bootstrap(self,
                  cdate=None,
                  exec_date=datetime.now().strftime('%Y-%m-%d'),
                  ndays=3):
        finished_step, exec_date = self.get_update_info(cdate, exec_date)
        self.logger.info("enter updating.%s" % finished_step)
        if finished_step < 1:
            if not self.cal_client.init():
                self.logger.error("cal client init failed")
                return False
            self.set_update_info(1, exec_date, cdate)

        if finished_step < 2:
            if not self.index_info_client.update():
                self.logger.error("index info init failed")
                return False
            self.set_update_info(2, exec_date, cdate)

        if finished_step < 3:
            if not self.stock_info_client.update():
                self.logger.error("stock info init failed")
                return False
            self.set_update_info(3, exec_date, cdate)

        if finished_step < 4:
            if not self.comb_info_client.update():
                self.logger.error("comb info init failed")
                return False
            self.set_update_info(4, exec_date, cdate)

        if finished_step < 5:
            if not self.industry_info_client.update():
                self.logger.error("industry info init failed")
                return False
            self.set_update_info(5, exec_date, cdate)

        if finished_step < 6:
            if not self.init_tdx_index_info(cdate):
                self.logger.error("init tdx index info failed")
                return False
            self.set_update_info(6, exec_date, cdate)

        if finished_step < 7:
            if not self.sh_exchange_client.update(exec_date, num=ndays):
                self.logger.error("sh exchange update failed")
                return False
            self.set_update_info(7, exec_date, cdate)

        if finished_step < 8:
            if not self.sz_exchange_client.update(exec_date, num=ndays):
                self.logger.error("sz exchange update failed")
                return False
            self.set_update_info(8, exec_date, cdate)

        if finished_step < 9:
            if not self.init_index_components_info(exec_date):
                self.logger.error("init index components info failed")
                return False
            self.set_update_info(9, exec_date, cdate)

        if finished_step < 10:
            if not self.init_industry_info(cdate):
                self.logger.error("init industry info failed")
                return False
            self.set_update_info(10, exec_date, cdate)

        if finished_step < 11:
            if not self.rindustry_info_client.update(exec_date, num=ndays):
                self.logger.error("init %s rindustry info failed" % exec_date)
                return False
            self.set_update_info(11, exec_date, cdate)

        if finished_step < 12:
            if not self.init_yesterday_hk_info(exec_date, num=ndays):
                self.logger.error("init yesterday hk info failed")
                return False
            self.set_update_info(12, exec_date, cdate)

        if finished_step < 13:
            if not self.margin_client.update(exec_date, num=ndays):
                self.logger.error("init yesterday margin failed")
                return False
            self.set_update_info(13, exec_date, cdate)

        if finished_step < 14:
            if not self.init_stock_info(cdate):
                self.logger.error("init stock info set failed")
                return False
            self.set_update_info(14, exec_date, cdate)

        if finished_step < 15:
            if not self.init_base_float_profit():
                self.logger.error("init base float profit for all stock")
                return False
            self.set_update_info(15, exec_date, cdate)

        if finished_step < 16:
            if not self.init_valuation_info(cdate):
                self.logger.error("init stock valuation info failed")
                return False
            self.set_update_info(16, exec_date, cdate)

        if finished_step < 17:
            if not self.init_rvaluation_info(cdate):
                self.logger.error("init r stock valuation info failed")
                return False
            self.set_update_info(17, exec_date, cdate)

        if finished_step < 18:
            if not self.init_rindex_valuation_info(cdate):
                self.logger.error("init r index valuation info failed")
                return False
            self.set_update_info(18, exec_date, cdate)

        if finished_step < 19:
            if not self.rindex_stock_data_client.update(exec_date, num=ndays):
                self.logger.error("rstock data set failed")
                return False
            self.set_update_info(19, exec_date, cdate)

        if finished_step < 20:
            if not self.set_bull_stock_ratio(exec_date, num=ndays):
                self.logger.error("bull ratio set failed")
                return False
            self.set_update_info(20, exec_date, cdate)

        self.logger.info("updating succeed")
        return True

    def clear_network_env(self):
        kill_process("google-chrome")
        kill_process("renderer")
        kill_process("Xvfb")
        kill_process("zygote")
        kill_process("defunct")
        kill_process("show-component-extension-options")

    def update(self, sleep_time):
        succeed = False
        while True:
            self.logger.debug("enter daily update process. %s" %
                              datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
            try:
                if self.cal_client.is_trading_day():
                    #self.logger.info("is trading day. %s, succeed:%s" % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), succeed))
                    if self.is_collecting_time():
                        self.logger.debug(
                            "enter collecting time. %s, succeed:%s" %
                            (datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
                             succeed))
                        if not succeed:
                            self.clear_network_env()
                            mdate = datetime.now().strftime('%Y-%m-%d')
                            ndate = get_latest_data_date()
                            if ndate is not None:
                                if ndate >= transfer_date_string_to_int(mdate):
                                    if self.updating_date is None:
                                        self.updating_date = mdate
                                    succeed = self.bootstrap(
                                        cdate=self.updating_date,
                                        exec_date=self.updating_date)
                                    if succeed: self.updating_date = None
                                else:
                                    self.logger.debug("%s is older for %s" %
                                                      (ndate, mdate))
                    else:
                        succeed = False
                gevent.sleep(sleep_time)
            except Exception as e:
                time.sleep(1)
                self.logger.error(e)

    def init_combination_info(self):
        trading_info = self.comb_info_client.get()
        for _, code_id in trading_info['code'].iteritems():
            if str(code_id) not in self.combination_objs:
                self.combination_objs[str(code_id)] = Combination(
                    code_id, self.dbinfo)

    def init_base_float_profit(self):
        def _set_base_float_profit(code_id):
            if CStock(code_id).set_base_floating_profit():
                self.logger.info("%s set base float profit success" % code_id)
                return (code_id, True)
            else:
                self.logger.error("%s set base float profit failed" % code_id)
                return (code_id, False)

        df = self.stock_info_client.get()
        if df.empty: return False
        failed_list = df.code.tolist()
        return process_concurrent_run(_set_base_float_profit,
                                      failed_list,
                                      num=8)

    def init_rindex_valuation_info(self, cdate):
        for code in ct.INDEX_DICT:
            if not self.cvaluation_client.set_index_valuation(code, cdate):
                self.logger.error(
                    "{} set {} data for rvaluation failed".format(code, mdate))
                return False
        return True

    def init_rvaluation_info(self, cdate=None):
        def cget(mdate, code):
            return code, CStock(code).get_val_data(mdate)

        df = self.stock_info_client.get()
        code_list = df.code.tolist()
        try:
            obj_pool = Pool(5000)
            all_df = pd.DataFrame()
            cfunc = partial(cget, cdate)
            for code_data in obj_pool.imap_unordered(cfunc, code_list):
                if code_data[1] is not None and not code_data[1].empty:
                    tem_df = code_data[1]
                    tem_df['code'] = code_data[0]
                    all_df = all_df.append(tem_df)
            obj_pool.join(timeout=5)
            obj_pool.kill()
            all_df = all_df.reset_index(drop=True)
            file_name = "{}.csv".format(cdate)
            file_path = Path(ct.RVALUATION_DIR) / file_name
            all_df.to_csv(file_path,
                          index=False,
                          header=True,
                          mode='w',
                          encoding='utf8')
            return True
        except Exception as e:
            self.logger.error(e)
            return False

    def init_valuation_info(self, cdate=None):
        df = self.stock_info_client.get()
        code_list = df['code'].tolist()
        time2market_list = df['timeToMarket'].tolist()
        code2timedict = dict(zip(code_list, time2market_list))
        cfun = partial(self.cvaluation_client.set_stock_valuation,
                       code2timedict, cdate)
        return process_concurrent_run(cfun,
                                      code_list,
                                      num=15,
                                      black_list=list())

    def init_stock_info(self, cdate=None):
        def _set_stock_info(mdate, bonus_info, index_info, code_id):
            try:
                if CStock(code_id).set_k_data(bonus_info, index_info, mdate):
                    self.logger.info("%s set k data success for date:%s",
                                     code_id, mdate)
                    return (code_id, True)
                else:
                    self.logger.error("%s set k data failed for date:%s",
                                      code_id, mdate)
                    return (code_id, False)
            except Exception as e:
                self.logger.error("%s set k data for date %s exception:%s",
                                  code_id, mdate, e)
                return (code_id, False)

        #get stock bonus info
        bonus_info = pd.read_csv("/data/tdx/base/bonus.csv",
                                 sep=',',
                                 dtype={
                                     'code': str,
                                     'market': int,
                                     'type': int,
                                     'money': float,
                                     'price': float,
                                     'count': float,
                                     'rate': float,
                                     'date': int
                                 })

        index_info = CIndex('000001').get_k_data()
        if index_info is None or index_info.empty: return False
        df = self.stock_info_client.get()
        if df.empty: return False
        failed_list = df.code.tolist()
        if cdate is None:
            cfunc = partial(_set_stock_info, cdate, bonus_info, index_info)
            return process_concurrent_run(cfunc, failed_list, num=8)
        else:
            cfunc = partial(_set_stock_info, cdate, bonus_info, index_info)
            succeed = True
            if not process_concurrent_run(cfunc, failed_list, num=8):
                succeed = False
            return succeed
            #start_date = get_day_nday_ago(cdate, num = 4, dformat = "%Y-%m-%d")
            #for mdate in get_dates_array(start_date, cdate, asending = True):
            #    if self.cal_client.is_trading_day(mdate):
            #        self.logger.info("start recording stock info: %s", mdate)
            #        cfunc = partial(_set_stock_info, mdate, bonus_info, index_info)
            #        if not process_concurrent_run(cfunc, failed_list, num = 500):
            #            self.logger.error("compute stock info for %s failed", mdate)
            #            return False
            #return True

    def init_industry_info(self, cdate, num=1):
        def _set_industry_info(cdate, code_id):
            return (code_id, CIndex(code_id).set_k_data(cdate))

        df = self.industry_info_client.get()
        if cdate is None:
            cfunc = partial(_set_industry_info, cdate)
            return concurrent_run(cfunc, df.code.tolist(), num=5)
        else:
            succeed = True
            start_date = get_day_nday_ago(cdate, num=num, dformat="%Y-%m-%d")
            for mdate in get_dates_array(start_date, cdate, asending=True):
                if self.cal_client.is_trading_day(mdate):
                    cfunc = partial(_set_industry_info, mdate)
                    if not concurrent_run(cfunc, df.code.tolist(), num=5):
                        succeed = False
            return succeed

    def init_yesterday_hk_info(self, cdate, num):
        succeed = True
        for data in ((ct.SH_MARKET_SYMBOL, ct.HK_MARKET_SYMBOL),
                     (ct.SZ_MARKET_SYMBOL, ct.HK_MARKET_SYMBOL)):
            if not self.connect_client.set_market(data[0], data[1]):
                self.logger.error("connect_client for %s failed" % data)
                succeed = False
                continue
            if not self.connect_client.update(cdate, num=num):
                succeed = False

            self.connect_client.close()
            self.connect_client.quit()
        return succeed

    def get_concerned_index_codes(self):
        index_codes = list(ct.INDEX_DICT.keys())
        #添加MSCI板块
        index_codes.append('880883')
        return index_codes

    def init_index_components_info(self, cdate=None):
        if cdate is None: cdate = datetime.now().strftime('%Y-%m-%d')

        def _set_index_info(code_id):
            if code_id in self.index_objs:
                _obj = self.index_objs[code_id]
            else:
                _obj = CIndex(code_id) if code_id in list(
                    ct.INDEX_DICT.keys()) else TdxFgIndex(code_id)
            return (code_id, _obj.set_components_data(cdate))

        index_codes = self.get_concerned_index_codes()
        return concurrent_run(_set_index_info, index_codes, num=10)

    def set_bull_stock_ratio(self, cdate, num=10):
        def _set_bull_stock_ratio(code_id):
            return (code_id, BullStockRatio(code_id).update(cdate, num))

        index_codes = self.get_concerned_index_codes()
        return concurrent_run(_set_bull_stock_ratio, index_codes)

    def init_tdx_index_info(self, cdate=None, num=1):
        def _set_index_info(cdate, code_id):
            try:
                if code_id in self.index_objs:
                    _obj = self.index_objs[code_id]
                else:
                    _obj = CIndex(code_id) if code_id in list(
                        ct.TDX_INDEX_DICT.keys()) else TdxFgIndex(code_id)
                return (code_id, _obj.set_k_data(cdate))
            except Exception as e:
                self.logger.error(e)
                return (code_id, False)

        #index_code_list = self.get_concerned_index_codes()
        index_code_list = list(ct.TDX_INDEX_DICT.keys())
        if cdate is None:
            cfunc = partial(_set_index_info, cdate)
            return concurrent_run(cfunc, index_code_list, num=5)
        else:
            succeed = True
            start_date = get_day_nday_ago(cdate, num=num, dformat="%Y-%m-%d")
            for mdate in get_dates_array(start_date, cdate, asending=True):
                if self.cal_client.is_trading_day(mdate):
                    cfunc = partial(_set_index_info, mdate)
                    if not concurrent_run(cfunc, index_code_list, num=5):
                        succeed = False
            return succeed
Exemplo n.º 6
0
class DataManager:
    def __init__(self, dbinfo=ct.DB_INFO, redis_host=None):
        self.dbinfo = dbinfo
        self.logger = getLogger(__name__)
        self.index_objs = dict()
        self.stock_objs = dict()
        self.combination_objs = dict()
        self.cal_client = CCalendar(dbinfo, redis_host)
        self.index_info_client = IndexInfo()
        self.comb_info_client = CombinationInfo(dbinfo, redis_host)
        self.stock_info_client = CStockInfo(dbinfo, redis_host)
        self.rindex_stock_data_client = RIndexStock(dbinfo, redis_host)
        self.industry_info_client = IndustryInfo(dbinfo, redis_host)
        self.rindustry_info_client = RIndexIndustryInfo(dbinfo, redis_host)
        self.limit_client = CLimit(dbinfo, redis_host)
        self.animation_client = CAnimation(dbinfo, redis_host)
        self.subscriber = Subscriber()
        self.quote_handler = StockQuoteHandler()
        self.ticker_handler = TickerHandler()
        self.connect_client = StockConnect(market_from=ct.SH_MARKET_SYMBOL,
                                           market_to=ct.HK_MARKET_SYMBOL,
                                           dbinfo=dbinfo,
                                           redis_host=redis_host)
        self.margin_client = Margin(dbinfo=dbinfo, redis_host=redis_host)
        self.emotion_client = Emotion(dbinfo=dbinfo, redis_host=redis_host)
        self.sh_exchange_client = StockExchange(ct.SH_MARKET_SYMBOL)
        self.sz_exchange_client = StockExchange(ct.SZ_MARKET_SYMBOL)

    def is_collecting_time(self, now_time=datetime.now()):
        _date = now_time.strftime('%Y-%m-%d')
        y, m, d = time.strptime(_date, "%Y-%m-%d")[0:3]
        aft_open_hour, aft_open_minute, aft_open_second = (19, 00, 00)
        aft_open_time = datetime(y, m, d, aft_open_hour, aft_open_minute,
                                 aft_open_second)
        aft_close_hour, aft_close_minute, aft_close_second = (23, 59, 59)
        aft_close_time = datetime(y, m, d, aft_close_hour, aft_close_minute,
                                  aft_close_second)
        return aft_open_time < now_time < aft_close_time

    def is_morning_time(self, now_time=datetime.now()):
        _date = now_time.strftime('%Y-%m-%d')
        y, m, d = time.strptime(_date, "%Y-%m-%d")[0:3]
        mor_open_hour, mor_open_minute, mor_open_second = (0, 0, 0)
        mor_open_time = datetime(y, m, d, mor_open_hour, mor_open_minute,
                                 mor_open_second)
        mor_close_hour, mor_close_minute, mor_close_second = (6, 30, 0)
        mor_close_time = datetime(y, m, d, mor_close_hour, mor_close_minute,
                                  mor_close_second)
        return mor_open_time < now_time < mor_close_time

    def collect_combination_runtime_data(self):
        def _combination_run(code_id):
            self.combination_objs[code_id].run()
            return (code_id, True)

        todo_iplist = list(self.combination_objs.keys())
        return concurrent_run(_combination_run, todo_iplist, num=10)

    def collect_stock_runtime_data(self):
        if self.ticker_handler.empty(): return
        datas = self.ticker_handler.getQueue()
        while not datas.empty():
            df = datas.get()
            df = df.set_index('time')
            df.index = pd.to_datetime(df.index)
            for code_str in set(df.code):
                code_id = code_str.split('.')[1]
                self.stock_objs[code_id].run(df.loc[df.code == code_str])

    def init_real_stock_info(self):
        concerned_list = self.comb_info_client.get_concerned_list()
        prefix_concerned_list = [add_prifix(code) for code in concerned_list]
        ret = self.subscriber.subscribe(prefix_concerned_list, SubType.TICKER,
                                        self.ticker_handler)
        if 0 == ret:
            for code in concerned_list:
                if code not in self.stock_objs:
                    self.stock_objs[code] = CStock(code,
                                                   self.dbinfo,
                                                   should_create_influxdb=True,
                                                   should_create_mysqldb=True)
        return ret

    def init_index_info(self):
        index_list = ct.INDEX_DICT.keys()
        prefix_index_list = [add_index_prefix(code) for code in index_list]
        ret = self.subscriber.subscribe(prefix_index_list, SubType.QUOTE,
                                        self.quote_handler)
        if 0 != ret:
            self.logger.error("subscribe for index list failed")
            return ret
        for code in index_list:
            if code not in self.index_objs:
                self.index_objs[code] = CIndex(code,
                                               should_create_influxdb=True,
                                               should_create_mysqldb=True)

    def collect_index_runtime_data(self):
        if self.quote_handler.empty(): return
        datas = self.quote_handler.getQueue()
        while not datas.empty():
            df = datas.get()
            df['time'] = df.data_date + ' ' + df.data_time
            df = df.drop(['data_date', 'data_time'], axis=1)
            df = df.set_index('time')
            df.index = pd.to_datetime(df.index)
            for code_str in set(df.code):
                code_id = code_str.split('.')[1]
                self.index_objs[code_id].run(df.loc[df.code == code_str])

    def run(self, sleep_time):
        while True:
            try:
                if self.cal_client.is_trading_day():
                    if is_trading_time():
                        sleep_time = 1
                        if not self.subscriber.status():
                            self.subscriber.start()
                            if 0 == self.init_index_info(
                            ) and 0 == self.init_real_stock_info():
                                self.init_combination_info()
                            else:
                                self.logger.debug("enter stop dict time")
                                self.subscriber.stop()
                        else:
                            self.collect_stock_runtime_data()
                            self.collect_combination_runtime_data()
                            self.collect_index_runtime_data()
                            self.animation_client.collect()
                    else:
                        sleep_time = 60
                        if self.subscriber.status():
                            self.subscriber.stop()
            except Exception as e:
                traceback.print_exc()
                self.logger.error(e)
            time.sleep(sleep_time)

    def set_update_info(self,
                        step_length,
                        exec_date,
                        cdate=None,
                        filename=ct.STEPFILE):
        step_info = dict()
        if cdate is None: cdate = 'none'
        step_info[cdate] = dict()
        step_info[cdate]['step'] = step_length
        step_info[cdate]['date'] = exec_date
        with open(filename, 'w') as f:
            json.dump(step_info, f)
        self.logger.info("finish step :%s" % step_length)

    def get_update_info(self,
                        cdate=None,
                        exec_date=None,
                        filename=ct.STEPFILE):
        if cdate is None: cdate = 'none'
        if not os.path.exists(filename): return (0, exec_date)
        with open(filename, 'r') as f:
            step_info = json.load(f)
        if cdate not in step_info: return (0, exec_date)
        return (step_info[cdate]['step'], step_info[cdate]['date'])

    def bootstrap(self,
                  cdate=None,
                  exec_date=datetime.now().strftime('%Y-%m-%d')):
        finished_step, exec_date = self.get_update_info(cdate, exec_date)
        self.logger.info("enter updating.%s" % finished_step)
        if finished_step < 1:
            if not self.cal_client.init():
                self.logger.error("cal_client init failed")
                return False
            self.set_update_info(1, exec_date, cdate)

        if finished_step < 2:
            if not self.index_info_client.update():
                self.logger.error("index_info init failed")
                return False
            self.set_update_info(2, exec_date, cdate)

        if finished_step < 3:
            if not self.stock_info_client.update():
                self.logger.error("stock_info init failed")
                return False
            self.set_update_info(3, exec_date, cdate)

        if finished_step < 4:
            if not self.comb_info_client.update():
                self.logger.error("comb_info init failed")
                return False
            self.set_update_info(4, exec_date, cdate)

        if finished_step < 5:
            if not self.industry_info_client.update():
                self.logger.error("industry_info init failed")
                return False
            self.set_update_info(5, exec_date, cdate)

        if finished_step < 6:
            if not self.download_and_extract(exec_date):
                self.logger.error("download_and_extract failed")
                return False
            self.set_update_info(6, exec_date, cdate)

        if finished_step < 7:
            if not self.init_tdx_index_info(cdate):
                self.logger.error("init_tdx_index_info failed")
                return False
            self.set_update_info(7, exec_date, cdate)

        if finished_step < 8:
            if not self.sh_exchange_client.update(exec_date, num=30):
                self.logger.error("sh exchange update failed")
                return False
            self.set_update_info(8, exec_date, cdate)

        if finished_step < 9:
            if not self.sz_exchange_client.update(exec_date, num=30):
                self.logger.error("sz exchange update failed")
                return False
            self.set_update_info(9, exec_date, cdate)

        if finished_step < 10:
            if not self.init_index_components_info(exec_date):
                self.logger.error("init index components info failed")
                return False
            self.set_update_info(10, exec_date, cdate)

        if finished_step < 11:
            if not self.init_industry_info(cdate):
                self.logger.error("init_industry_info failed")
                return False
            self.set_update_info(11, exec_date, cdate)

        if finished_step < 12:
            if not self.rindustry_info_client.update(exec_date):
                self.logger.error("init %s rindustry info failed" % exec_date)
                return False
            self.set_update_info(12, exec_date, cdate)

        if finished_step < 13:
            if not self.limit_client.update(exec_date):
                self.logger.error("init_limit_info failed")
                return False
            self.set_update_info(13, exec_date, cdate)

        if finished_step < 14:
            if not self.init_yesterday_hk_info(exec_date):
                self.logger.error("init_yesterday_hk_info failed")
                return False
            self.set_update_info(14, exec_date, cdate)

        if finished_step < 15:
            if not self.margin_client.update(exec_date):
                self.logger.error("init_yesterday_margin failed")
                return False
            self.set_update_info(15, exec_date, cdate)

        if finished_step < 16:
            if not self.init_stock_info(cdate):
                self.logger.error("init_stock_info set failed")
                return False
            self.set_update_info(16, exec_date, cdate)

        if finished_step < 17:
            if not self.init_base_float_profit():
                self.logger.error("init base float profit for all stock")
                return False
            self.set_update_info(17, exec_date, cdate)

        if finished_step < 18:
            if not self.rindex_stock_data_client.update(exec_date, num=300):
                self.logger.error("rindex_stock_data set failed")
                return False
            self.set_update_info(18, exec_date, cdate)

        self.logger.info("updating succeed")
        return True

    def update(self, sleep_time):
        while True:
            self.logger.info("enter daily update process. %s" %
                             datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
            try:
                if self.cal_client.is_trading_day():
                    self.logger.info(
                        "is trading day. %s" %
                        datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
                    if self.is_collecting_time():
                        self.logger.info(
                            "is collecting time. %s" %
                            datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
                        self.bootstrap(
                            cdate=datetime.now().strftime('%Y-%m-%d'))
            except Exception as e:
                kill_process("google-chrome")
                kill_process("renderer")
                kill_process("Xvfb")
                kill_process("zygote")
                kill_process("defunct")
                kill_process("show-component-extension-options")
                self.logger.error(e)
            time.sleep(sleep_time)

    def init_combination_info(self):
        trading_info = self.comb_info_client.get()
        for _, code_id in trading_info['code'].iteritems():
            if str(code_id) not in self.combination_objs:
                self.combination_objs[str(code_id)] = Combination(
                    code_id, self.dbinfo)

    def init_base_float_profit(self):
        def _set_base_float_profit(code_id):
            return (code_id,
                    True) if CStock(code_id).set_base_floating_profit() else (
                        code_id, False)

        failed_list = self.stock_info_client.get().code.tolist()
        return process_concurrent_run(_set_base_float_profit,
                                      failed_list,
                                      num=500)

    def init_stock_info(self, cdate=None):
        def _set_stock_info(_date, bonus_info, index_info, code_id):
            try:
                if CStock(code_id).set_k_data(bonus_info, index_info, _date):
                    self.logger.info("%s set k data success" % code_id)
                    return (code_id, True)
                else:
                    self.logger.error("%s set k data failed" % code_id)
                    return (code_id, False)
            except Exception as e:
                self.logger.error("%s set k data exception:%s" % (code_id, e))
                return (code_id, False)

        #get stock bonus info
        bonus_info = pd.read_csv("/data/tdx/base/bonus.csv",
                                 sep=',',
                                 dtype={
                                     'code': str,
                                     'market': int,
                                     'type': int,
                                     'money': float,
                                     'price': float,
                                     'count': float,
                                     'rate': float,
                                     'date': int
                                 })

        index_info = CIndex('000001').get_k_data()
        if index_info is None or index_info.empty: return False

        df = self.stock_info_client.get()
        failed_list = df.code.tolist()
        if cdate is None:
            cfunc = partial(_set_stock_info, cdate, bonus_info, index_info)
            return process_concurrent_run(cfunc, failed_list, num=5)
        else:
            succeed = True
            start_date = get_day_nday_ago(cdate, num=10, dformat="%Y-%m-%d")
            for mdate in get_dates_array(start_date, cdate, asending=True):
                if self.cal_client.is_trading_day(mdate):
                    cfunc = partial(_set_stock_info, mdate, bonus_info,
                                    index_info)
                    if not process_concurrent_run(cfunc, failed_list, num=500):
                        succeed = False
            return succeed

    def init_industry_info(self, cdate):
        def _set_industry_info(cdate, code_id):
            return (code_id, CIndex(code_id).set_k_data(cdate))

        df = self.industry_info_client.get()
        if cdate is None:
            cfunc = partial(_set_industry_info, cdate)
            return concurrent_run(cfunc, df.code.tolist(), num=5)
        else:
            succeed = True
            start_date = get_day_nday_ago(cdate, num=30, dformat="%Y-%m-%d")
            for mdate in get_dates_array(start_date, cdate, asending=True):
                if self.cal_client.is_trading_day(mdate):
                    cfunc = partial(_set_industry_info, mdate)
                    if not concurrent_run(cfunc, df.code.tolist(), num=5):
                        succeed = False
            return succeed

    def init_yesterday_hk_info(self, cdate):
        succeed = True
        for data in ((ct.SH_MARKET_SYMBOL, ct.HK_MARKET_SYMBOL),
                     (ct.SZ_MARKET_SYMBOL, ct.HK_MARKET_SYMBOL)):
            if not self.connect_client.set_market(data[0], data[1]):
                self.logger.error("connect_client for %s failed" % data)
                succeed = False
                continue

            if not self.connect_client.update(cdate):
                succeed = False

            self.connect_client.close()
            self.connect_client.quit()
        kill_process("zygote")
        kill_process("defunct")
        kill_process("show-component-extension-options")
        return succeed

    def init_index_components_info(self, cdate=None):
        if cdate is None: cdate = datetime.now().strftime('%Y-%m-%d')

        def _set_index_info(code_id):
            _obj = self.index_objs[
                code_id] if code_id in self.index_objs else CIndex(code_id)
            return (code_id, _obj.set_components_data(cdate))

        return concurrent_run(_set_index_info,
                              list(ct.INDEX_DICT.keys()),
                              num=10)

    def init_tdx_index_info(self, cdate=None):
        def _set_index_info(cdate, code_id):
            try:
                _obj = self.index_objs[
                    code_id] if code_id in self.index_objs else CIndex(code_id)
                return (code_id, _obj.set_k_data(cdate))
            except Exception as e:
                self.logger.error(e)
                return (code_id, False)

        if cdate is None:
            cfunc = partial(_set_index_info, cdate)
            return concurrent_run(cfunc, list(ct.TDX_INDEX_DICT.keys()), num=5)
        else:
            succeed = True
            start_date = get_day_nday_ago(cdate, num=30, dformat="%Y-%m-%d")
            for mdate in get_dates_array(start_date, cdate, asending=True):
                if self.cal_client.is_trading_day(mdate):
                    cfunc = partial(_set_index_info, mdate)
                    if not concurrent_run(
                            cfunc, list(ct.TDX_INDEX_DICT.keys()), num=5):
                        succeed = False
            return succeed

    def download_and_extract(self, cdate):
        try:
            if not download(ct.ZIP_DIR, cdate): return False
            list_files = os.listdir(ct.ZIP_DIR)
            for filename in list_files:
                if not filename.startswith('.'):
                    file_path = os.path.join(ct.ZIP_DIR, filename)
                    if os.path.exists(file_path):
                        unzip(file_path, ct.TIC_DIR)
            return True
        except Exception as e:
            self.logger.error(e)
            return False
Exemplo n.º 7
0
    def relation_plot(self, df, good_list):
        close_price_list = [
            df[df.code == code].close.tolist() for code in good_list
        ]
        close_prices = np.vstack(close_price_list)

        open_price_list = [
            df[df.code == code].open.tolist() for code in good_list
        ]
        open_prices = np.vstack(open_price_list)

        # the daily variations of the quotes are what carry most information
        variation = (close_prices - open_prices) * 100 / open_prices

        logger.info("get variation succeed")
        # #############################################################################
        # learn a graphical structure from the correlations
        edge_model = covariance.GraphLassoCV()
        # standardize the time series: using correlations rather than covariance is more efficient for structure recovery
        X = variation.copy().T
        X /= X.std(axis=0)
        edge_model.fit(X)

        logger.info("mode compute succeed")
        # #############################################################################
        # cluster using affinity propagation
        _, labels = cluster.affinity_propagation(edge_model.covariance_)
        n_labels = labels.max()
        code_list = np.array(good_list)

        industry_dict = dict()
        industry_df_info = IndustryInfo.get()
        for index, name in industry_df_info.name.iteritems():
            content = industry_df_info.loc[index]['content']
            a_code_list = json.loads(content)
            for code in a_code_list:
                industry_dict[code] = name

        cluster_dict = dict()
        for i in range(n_labels + 1):
            cluster_dict[i] = code_list[labels == i]
            name_list = [
                CStockInfo.get(code, 'name') for code in code_list[labels == i]
            ]
            logger.info('cluster code %i: %s' %
                        ((i + 1), ', '.join(name_list)))

        cluster_info = dict()
        for group, _code_list in cluster_dict.items():
            for code in _code_list:
                iname = industry_dict[code]
                if group not in cluster_info: cluster_info[group] = set()
                cluster_info[group].add(iname)
            logger.info('cluster inustry %i: %s' %
                        ((i + 1), ', '.join(list(cluster_info[group]))))

        # #############################################################################
        # find a low-dimension embedding for visualization: find the best position of
        # the nodes (the stocks) on a 2D plane
        # we use a dense eigen_solver to achieve reproducibility (arpack is
        # initiated with random vectors that we don't control). In addition, we
        # use a large number of neighbors to capture the large-scale structure.
        node_position_model = manifold.LocallyLinearEmbedding(
            n_components=2, eigen_solver='dense', n_neighbors=6)
        embedding = node_position_model.fit_transform(X.T).T

        # #############################################################################
        # visualizatio
        plt.figure(1, facecolor='w', figsize=(10, 8))
        plt.clf()
        ax = plt.axes([0., 0., 1., 1.])
        plt.axis('off')

        # display a graph of the partial correlations
        partial_correlations = edge_model.precision_.copy()
        d = 1 / np.sqrt(np.diag(partial_correlations))
        partial_correlations *= d
        partial_correlations *= d[:, np.newaxis]
        non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02)

        # plot the nodes using the coordinates of our embedding
        plt.scatter(embedding[0],
                    embedding[1],
                    s=100 * d**2,
                    c=labels,
                    cmap=plt.cm.nipy_spectral)

        # plot the edges
        start_idx, end_idx = np.where(non_zero)
        # a sequence of (*line0*, *line1*, *line2*), where:: linen = (x0, y0), (x1, y1), ... (xm, ym)
        segments = [[embedding[:, start], embedding[:, stop]]
                    for start, stop in zip(start_idx, end_idx)]
        values = np.abs(partial_correlations[non_zero])
        lc = LineCollection(segments,
                            zorder=0,
                            cmap=plt.cm.hot_r,
                            norm=plt.Normalize(0, .7 * values.max()))
        lc.set_array(values)
        lc.set_linewidths(15 * values)
        ax.add_collection(lc)

        # add a label to each node. The challenge here is that we want to position the labels to avoid overlap with other labels
        for index, (name, label,
                    (x, y)) in enumerate(zip(code_list, labels, embedding.T)):
            dx = x - embedding[0]
            dx[index] = 1
            dy = y - embedding[1]
            dy[index] = 1
            this_dx = dx[np.argmin(np.abs(dy))]
            this_dy = dy[np.argmin(np.abs(dx))]
            if this_dx > 0:
                horizontalalignment = 'left'
                x = x + .002
            else:
                horizontalalignment = 'right'
                x = x - .002
            if this_dy > 0:
                verticalalignment = 'bottom'
                y = y + .002
            else:
                verticalalignment = 'top'
                y = y - .002
            plt.text(x,
                     y,
                     name,
                     size=10,
                     horizontalalignment=horizontalalignment,
                     verticalalignment=verticalalignment,
                     bbox=dict(facecolor='w',
                               edgecolor=plt.cm.nipy_spectral(label /
                                                              float(n_labels)),
                               alpha=.6))
        plt.xlim(
            embedding[0].min() - .15 * embedding[0].ptp(),
            embedding[0].max() + .10 * embedding[0].ptp(),
        )
        plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(),
                 embedding[1].max() + .03 * embedding[1].ptp())
        plt.savefig('/tmp/relation.png', dpi=1000)