def __init__(self, input, target, ndelays=None, bias=0.0, group_index=None, lags=None): ConvolutionalInCrowdModel.__init__(self, input, target, ndelays, bias, group_index, lags)
def test1(): #construct sample input matrix num_channels = 60 num_timepoints = 5000 stim = np.random.randn(num_channels, num_timepoints) #normalize stimulus so it's between -1 and 1 stim /= np.abs(stim).max() #transpose matrix, incrowd expects matrix to be # of time points X # of channels stim = stim.transpose() #construct sample filter time_lags = np.arange(0, 8, 1, dtype='int') real_filter = np.random.randn(num_channels, len(time_lags)) #make filter sparse real_filter[np.abs(real_filter) < 0.90] = 0.0 #normalize filter real_filter /= np.abs(real_filter).max() num_nonzero = (np.abs(real_filter) == 0.0).sum() print '# of nonzero elements in filter: %d out of %d' % ( num_nonzero, len(time_lags) * num_channels) #construct sample output using convolution output = fast_conv(stim, real_filter, time_lags) #add random noise to output output += np.random.randn(len(output)) * 1e-6 #create a convolutional incrowd model cic_model = ConvolutionalInCrowdModel(stim, output, lags=time_lags, bias=0.0) #create incrowd optimizer, using Lasso+Elastic net for the interior solver, #lambda1 is the constant for the Lasso regularization #lambda2 is the constant for the Elastic Net regularization #threshold is the fraction of parameters that are introduced into the active set at each iteration ico = InCrowd(cic_model, solver_params={ 'lambda1': 1.0, 'lambda2': 1.0 }, max_additions_fraction=0.25) #run the optimization num_iters = 15 for k in range(num_iters): if ico.converged: break ico.iterate() print 'Iteration %d, err=%0.9f' % (k + 1, (cic_model.residual(ico.x)** 2).sum()) #get the predicted filter, make cic_model reshape the parameters into what we would expect to see predicted_filter = cic_model.get_filter(ico.x) #predicted_output = fast_conv(stim, predicted_filter, time_lags) predicted_output = cic_model.forward(ico.x) filter_diff = real_filter - predicted_filter plt.figure() ax1 = plt.subplot2grid((2, 3), (0, 0)) plt.imshow(real_filter, aspect='auto', interpolation='nearest') plt.colorbar() plt.title('Actual Filter') ax2 = plt.subplot2grid((2, 3), (0, 1)) plt.imshow(predicted_filter, aspect='auto', interpolation='nearest') plt.colorbar() plt.title('Predicted Filter') ax3 = plt.subplot2grid((2, 3), (0, 2)) plt.imshow(filter_diff, aspect='auto', interpolation='nearest') plt.colorbar() plt.title('Differences') ax4 = plt.subplot2grid((2, 3), (1, 0), colspan=3) plt.plot(output, 'k-', linewidth=2.0) plt.plot(predicted_output, 'r-', linewidth=2.0)
def test1(): #construct sample input matrix num_channels = 60 num_timepoints = 5000 stim = np.random.randn(num_channels, num_timepoints) #normalize stimulus so it's between -1 and 1 stim /= np.abs(stim).max() #transpose matrix, incrowd expects matrix to be # of time points X # of channels stim = stim.transpose() #construct sample filter time_lags = np.arange(0, 8, 1, dtype='int') real_filter = np.random.randn(num_channels, len(time_lags)) #make filter sparse real_filter[np.abs(real_filter) < 0.90] = 0.0 #normalize filter real_filter /= np.abs(real_filter).max() num_nonzero = (np.abs(real_filter) == 0.0).sum() print '# of nonzero elements in filter: %d out of %d' % (num_nonzero, len(time_lags)*num_channels) #construct sample output using convolution output = fast_conv(stim, real_filter, time_lags) #add random noise to output output += np.random.randn(len(output))*1e-6 #create a convolutional incrowd model cic_model = ConvolutionalInCrowdModel(stim, output, lags=time_lags, bias=0.0) #create incrowd optimizer, using Lasso+Elastic net for the interior solver, #lambda1 is the constant for the Lasso regularization #lambda2 is the constant for the Elastic Net regularization #threshold is the fraction of parameters that are introduced into the active set at each iteration ico = InCrowd(cic_model, solver_params={'lambda1':1.0, 'lambda2':1.0}, max_additions_fraction=0.25) #run the optimization num_iters = 15 for k in range(num_iters): if ico.converged: break ico.iterate() print 'Iteration %d, err=%0.9f' % (k+1, (cic_model.residual(ico.x)**2).sum()) #get the predicted filter, make cic_model reshape the parameters into what we would expect to see predicted_filter = cic_model.get_filter(ico.x) #predicted_output = fast_conv(stim, predicted_filter, time_lags) predicted_output = cic_model.forward(ico.x) filter_diff = real_filter - predicted_filter plt.figure() ax1 = plt.subplot2grid((2, 3), (0, 0)) plt.imshow(real_filter, aspect='auto', interpolation='nearest') plt.colorbar() plt.title('Actual Filter') ax2 = plt.subplot2grid((2, 3), (0, 1)) plt.imshow(predicted_filter, aspect='auto', interpolation='nearest') plt.colorbar() plt.title('Predicted Filter') ax3 = plt.subplot2grid((2, 3), (0, 2)) plt.imshow(filter_diff, aspect='auto', interpolation='nearest') plt.colorbar() plt.title('Differences') ax4 = plt.subplot2grid((2, 3), (1, 0), colspan=3) plt.plot(output, 'k-', linewidth=2.0) plt.plot(predicted_output, 'r-', linewidth=2.0)