def convolve(self, image, training, keep_prob): result = layer.batch_normalization(image, training) result = layer.conv_relu(result, 1, 18, width=5) result = layer.max_pool(result) # 14 result = layer.drop_conv(keep_prob, result, 18, 24, width=5) result = tf.nn.relu(result) result = layer.max_pool(result) # 7 return layer.drop_conv(keep_prob, result, 24, 10, width=7, padding="VALID")
def convolve(self, image, training, keep_prob): result = layer.batch_normalization(image, training) result = layer.conv_relu(result, 1, 18, width=5, padding="VALID") result = layer.max_pool(result) # 12 result = layer.resnet_block(result, 18, 3, training) result = layer.resnet_block(result, 18, 3, training) result = layer.max_pool(result) # 6 result = layer.conv_relu(result, 18, 24, width=1) result = layer.resnet_narrow(result, 24, 3, training) result = layer.resnet_narrow(result, 24, 3, training) result = layer.max_pool(result) # 3 result = layer.conv_relu(result, 24, 32, width=1) result = layer.resnet_narrow(result, 32, 3, training) result = layer.resnet_narrow(result, 32, 3, training) return layer.drop_conv(keep_prob, result, 32, 10, width=3, padding="VALID")