Exemplo n.º 1
0
 def convolve(self, image, training, keep_prob):
     result = layer.batch_normalization(image, training)
     result = layer.conv_relu(result, 1, 18, width=5)
     result = layer.max_pool(result)  # 14
     result = layer.drop_conv(keep_prob, result, 18, 24, width=5)
     result = tf.nn.relu(result)
     result = layer.max_pool(result)  # 7
     return layer.drop_conv(keep_prob,
                            result,
                            24,
                            10,
                            width=7,
                            padding="VALID")
Exemplo n.º 2
0
 def convolve(self, image, training, keep_prob):
     result = layer.batch_normalization(image, training)
     result = layer.conv_relu(result, 1, 18, width=5, padding="VALID")
     result = layer.max_pool(result)  # 12
     result = layer.resnet_block(result, 18, 3, training)
     result = layer.resnet_block(result, 18, 3, training)
     result = layer.max_pool(result)  # 6
     result = layer.conv_relu(result, 18, 24, width=1)
     result = layer.resnet_narrow(result, 24, 3, training)
     result = layer.resnet_narrow(result, 24, 3, training)
     result = layer.max_pool(result)  # 3
     result = layer.conv_relu(result, 24, 32, width=1)
     result = layer.resnet_narrow(result, 32, 3, training)
     result = layer.resnet_narrow(result, 32, 3, training)
     return layer.drop_conv(keep_prob,
                            result,
                            32,
                            10,
                            width=3,
                            padding="VALID")