예제 #1
0
 def __init__(self):
   Network.__init__(self)
   self._feat_stride = [16, ]
   self._feat_compress = [1. / float(self._feat_stride[0]), ]
   self._net_conv_channels = 512
   self._fc7_channels = 4096
   self._init_head_tail()
 def __init__(self):
   Network.__init__(self)
   self._feat_stride = [16, ]
   self._feat_compress = [1. / float(self._feat_stride[0]), ]
   self._depth_multiplier = cfg.MOBILENET.DEPTH_MULTIPLIER
   self._net_conv_channels = 512
   self._fc7_channels = 1024
예제 #3
0
 def __init__(self, feat_strdie=(16, ), anchor_scales=(8, 16, 32), anchor_ratios=(0.5, 1, 2)):
   Network.__init__(self)
   self._channels['head'] = 512
   self._channels['tail'] = 4096
   self._feat_stride = feat_strdie
   self._anchor_scales = anchor_scales
   self._anchor_ratios = anchor_ratios
   self._num_anchors = len(anchor_scales)*len(anchor_ratios)
예제 #4
0
 def __init__(self):
     Network.__init__(self)
     self._feat_stride = [
         16,
     ]
     self._feat_compress = [
         1. / float(self._feat_stride[0]),
     ]
     self._scope = 'vgg_16'
예제 #5
0
 def __init__(self):
     Network.__init__(self)
     self._feat_stride = [
         16,
     ]
     self._feat_compress = [
         1. / float(self._feat_stride[0]),
     ]
     self._depth_multiplier = cfg.MOBILENET.DEPTH_MULTIPLIER
     self._scope = 'MobilenetV1'
예제 #6
0
 def __init__(self, num_layers=50):
     Network.__init__(self)
     self._feat_stride = [
         16,
     ]
     self._feat_compress = [
         1. / float(self._feat_stride[0]),
     ]
     self._num_layers = num_layers
     self._net_conv_channels = 1024
     self._fc7_channels = 2048
예제 #7
0
 def __init__(self, num_layers=50):
     Network.__init__(self)
     self._feat_stride = [
         16,
     ]
     self._feat_compress = [
         1. / float(self._feat_stride[0]),
     ]
     self._num_layers = num_layers
     self._scope = 'resnet_v1_%d' % num_layers
     self._decide_blocks()
예제 #8
0
 def __init__(self, num_layers=50):
     Network.__init__(self)
     # conv1(feet_stride:2) * pool1(feet_stride:2) * block1(feet_stride:2) *
     # block2(feet_stride:2) * block3(feet_stride:1) = 16
     self._feat_stride = [
         16,
     ]
     self._feat_compress = [
         1. / float(self._feat_stride[0]),
     ]
     self._num_layers = num_layers
     self._scope = 'resnet_v1_%d' % num_layers
     self._decide_blocks()
예제 #9
0
 def __init__(self,
              resnet_type,
              feat_strdie=(4, 8, 16, 32, 64),
              anchor_scales=(32, 64, 128, 256, 512),
              anchor_ratios=(0.5, 1, 2)):
     Network.__init__(self)
     self._resnet_type = resnet_type
     self._channels['head'] = None
     self._channels['tail'] = None
     self._lateral_channel = 256
     self._feat_stride = feat_strdie
     self._anchor_scales = anchor_scales
     self._anchor_ratios = anchor_ratios
     self._num_anchors = len(anchor_ratios)
     self._residual_block = None
 def __init__(self,
              batch_size=1,
              num_layers=121,
              reduction=0.5,
              dropout_rate=None):
     Network.__init__(self, batch_size=batch_size)
     self._num_layers = num_layers
     self._dense_scope = 'densenet%d' % num_layers
     #        if self._num_layers == 121:
     #            self.num_filters = 64
     #            self.growth_rate = 32
     #        elif  self._num_layers == 161:
     #            self.num_filters = 96
     #            self.growth_rate = 48
     self.reduction = reduction
     self.dropout_rate = dropout_rate
예제 #11
0
 def __init__(self, batch_size=1, data_format='NHWC',
              width=1.0, lr=0.001, weight_decay = 0.0005,
              label_smoothing=0.0):
     Network.__init__(self, batch_size=batch_size)
     self.dropout_keep_prob = 0.8
     self.is_training = True
     self.min_depth = 8
     self.depth = 1.0
     self.conv_defs = None
     self.spatial_squeeze = True
     self.reuse = None
     self._scope = 'MobileNetV2'
     self.global_pool = False
     self.dw_code = None
     self.ratio_code = None
     self.se = 1
     self.data_format = data_format
     self.lr = lr
     self.depth_multiplier = width
     self.weight_decay = weight_decay
     self.label_smoothing = label_smoothing
예제 #12
0
 def __init__(self, batch_size=1):
     Network.__init__(self, batch_size=batch_size)
예제 #13
0
 def __init__(self, batch_size=1, num_layers=50):
     Network.__init__(self, batch_size=batch_size)
     self._num_layers = num_layers
     self._resnet_scope = 'resnet_v1_%d' % num_layers
예제 #14
0
 def __init__(self, batch_size=1):
     Network.__init__(self, batch_size=batch_size)
     LSTM.__init__(self, self.k, self.lstm_out, self.batch_size)
예제 #15
0
 def __init__(self, batch_size=1, num_layers=50):
     Network.__init__(self, batch_size=batch_size)
     self._num_layers = num_layers
     self._resnet_scope = 'resnet_v1_%d' % num_layers
     print('build_network init, _num_layers', self._num_layers)
예제 #16
0
 def __init__(self, batch_size=1):
     Network.__init__(self,batch_size)
     # 原图到特征图缩放比例,以及压缩参数
     self._feat_stride = [16, ]
     self._feat_compress = [1. / float(self._feat_stride[0]), ]
     self._scope = 'vgg_16'