def __init__(self): Network.__init__(self) self._feat_stride = [16, ] self._feat_compress = [1. / float(self._feat_stride[0]), ] self._net_conv_channels = 512 self._fc7_channels = 4096 self._init_head_tail()
def __init__(self): Network.__init__(self) self._feat_stride = [16, ] self._feat_compress = [1. / float(self._feat_stride[0]), ] self._depth_multiplier = cfg.MOBILENET.DEPTH_MULTIPLIER self._net_conv_channels = 512 self._fc7_channels = 1024
def __init__(self, feat_strdie=(16, ), anchor_scales=(8, 16, 32), anchor_ratios=(0.5, 1, 2)): Network.__init__(self) self._channels['head'] = 512 self._channels['tail'] = 4096 self._feat_stride = feat_strdie self._anchor_scales = anchor_scales self._anchor_ratios = anchor_ratios self._num_anchors = len(anchor_scales)*len(anchor_ratios)
def __init__(self): Network.__init__(self) self._feat_stride = [ 16, ] self._feat_compress = [ 1. / float(self._feat_stride[0]), ] self._scope = 'vgg_16'
def __init__(self): Network.__init__(self) self._feat_stride = [ 16, ] self._feat_compress = [ 1. / float(self._feat_stride[0]), ] self._depth_multiplier = cfg.MOBILENET.DEPTH_MULTIPLIER self._scope = 'MobilenetV1'
def __init__(self, num_layers=50): Network.__init__(self) self._feat_stride = [ 16, ] self._feat_compress = [ 1. / float(self._feat_stride[0]), ] self._num_layers = num_layers self._net_conv_channels = 1024 self._fc7_channels = 2048
def __init__(self, num_layers=50): Network.__init__(self) self._feat_stride = [ 16, ] self._feat_compress = [ 1. / float(self._feat_stride[0]), ] self._num_layers = num_layers self._scope = 'resnet_v1_%d' % num_layers self._decide_blocks()
def __init__(self, num_layers=50): Network.__init__(self) # conv1(feet_stride:2) * pool1(feet_stride:2) * block1(feet_stride:2) * # block2(feet_stride:2) * block3(feet_stride:1) = 16 self._feat_stride = [ 16, ] self._feat_compress = [ 1. / float(self._feat_stride[0]), ] self._num_layers = num_layers self._scope = 'resnet_v1_%d' % num_layers self._decide_blocks()
def __init__(self, resnet_type, feat_strdie=(4, 8, 16, 32, 64), anchor_scales=(32, 64, 128, 256, 512), anchor_ratios=(0.5, 1, 2)): Network.__init__(self) self._resnet_type = resnet_type self._channels['head'] = None self._channels['tail'] = None self._lateral_channel = 256 self._feat_stride = feat_strdie self._anchor_scales = anchor_scales self._anchor_ratios = anchor_ratios self._num_anchors = len(anchor_ratios) self._residual_block = None
def __init__(self, batch_size=1, num_layers=121, reduction=0.5, dropout_rate=None): Network.__init__(self, batch_size=batch_size) self._num_layers = num_layers self._dense_scope = 'densenet%d' % num_layers # if self._num_layers == 121: # self.num_filters = 64 # self.growth_rate = 32 # elif self._num_layers == 161: # self.num_filters = 96 # self.growth_rate = 48 self.reduction = reduction self.dropout_rate = dropout_rate
def __init__(self, batch_size=1, data_format='NHWC', width=1.0, lr=0.001, weight_decay = 0.0005, label_smoothing=0.0): Network.__init__(self, batch_size=batch_size) self.dropout_keep_prob = 0.8 self.is_training = True self.min_depth = 8 self.depth = 1.0 self.conv_defs = None self.spatial_squeeze = True self.reuse = None self._scope = 'MobileNetV2' self.global_pool = False self.dw_code = None self.ratio_code = None self.se = 1 self.data_format = data_format self.lr = lr self.depth_multiplier = width self.weight_decay = weight_decay self.label_smoothing = label_smoothing
def __init__(self, batch_size=1): Network.__init__(self, batch_size=batch_size)
def __init__(self, batch_size=1, num_layers=50): Network.__init__(self, batch_size=batch_size) self._num_layers = num_layers self._resnet_scope = 'resnet_v1_%d' % num_layers
def __init__(self, batch_size=1): Network.__init__(self, batch_size=batch_size) LSTM.__init__(self, self.k, self.lstm_out, self.batch_size)
def __init__(self, batch_size=1, num_layers=50): Network.__init__(self, batch_size=batch_size) self._num_layers = num_layers self._resnet_scope = 'resnet_v1_%d' % num_layers print('build_network init, _num_layers', self._num_layers)
def __init__(self, batch_size=1): Network.__init__(self,batch_size) # 原图到特征图缩放比例,以及压缩参数 self._feat_stride = [16, ] self._feat_compress = [1. / float(self._feat_stride[0]), ] self._scope = 'vgg_16'