def setup(self, bottom, top): params = yaml.load(self.param_str) self.check_params(params) caffe_root = params['caffe_root'] db_dir = params['db_dir'] self.group_cnt = params['group_cnt'] self.batch_size = params['batch_size'] lmdb_db_path_q, lmdb_db_path_t, meta_db_path_q, meta_db_path_t = self.define_db_paths( db_dir) self.im_shape = params['im_shape'] self.q_loader = loader.Loader(lmdb_db_path_q, meta_db_path_q, caffe_root, self.im_shape[1]) self.t_loader = loader.Loader(lmdb_db_path_t, meta_db_path_t, caffe_root, self.im_shape[1]) self.load_from_q_base = True self.is_finished = False self.group_id = 0 self.item_id = 0 #data top[0].reshape(self.batch_size, self.im_shape[0], self.im_shape[1], self.im_shape[2]) #labels top[1].reshape(self.batch_size) #group top[2].reshape(1) #database (query or test) top[3].reshape(1)
def create_dataset(cfg, image_data): if image_data: imgs = image_to_array(image_data) imgs_str = image_to_string(image_data) masks = [] names = image_data else: files_csv = dataset_to_path(cfg.test_data, os.path.join(cfg.data_dir, 'test'), cfg.dim) imgs_str = [] for file_csv in files_csv: df = pd.read_csv(file_csv, header=None) img_paths = df[0] imgs_str.extend(image_to_string(img_paths)) l = loader.Loader(cfg) imgs, masks, names = l.create_eval_data(dataset_to_path(cfg.test_data, os.path.join(cfg.data_dir, 'test'), cfg.dim)) dataset = namedtuple('data_collection', ['images', 'images_str' 'masks', 'names']) dataset.images = imgs dataset.images_str = imgs_str dataset.masks = masks dataset.names = names return dataset
def __init__(self, master=None, logger=None): super().__init__(master) self.master = master self.logger = logger self.configure(bg=DARKCOLOR) self.pack() self.master.title("MAIA - Maine AI Arena") # Create the msgr objs self.msg_queue = queue.Queue() self.imsgr = msgs.IMsgr(self.msg_queue) self.omsgr = msgs.OMsgr(self.msg_queue) self.ldr = loader.Loader(self.logger) self.sim = sim.Sim(self.imsgr) # log.LogInit() # log_setting = self.ldr.getMainConfigData('debug') # if type(log_setting)==bool: # log.LogSetDebug(log_setting) # log.LogDebug("DEBUG IS ON") self.combat_log = [] self.BuildUI() self.UIMap = None
def main(): parser = argparse.ArgumentParser(description='Generate sample tree data under the protracted speciation model') parser.add_argument('--output', '-o') parser.add_argument('--schema', '-s', choices=['newick', 'nexus'], required=True, help='Tree schema: Newick, Nexus') parser.add_argument('--config', '-c', default="default", required=True, help='') args = parser.parse_args() args.parser = parser config = cl.Loader(args.output) headers = config.load_headers() # load run parameters generated_sample_parameters = config.get_generate_sample_values() generated_protracted_speciation_process_parameters = config.generate_protracted_speciation_process_values() try: # getting trees get_trees = call_sample_tree(generated_sample_parameters, generated_protracted_speciation_process_parameters) # generating Sequences & saving trees, creating file names a = rng_file_name() for i in range(len(get_trees)): names = ["lineage", "orthospecies"] file_name = names[i][:3] + '_' + a + "." + str(args.schema) file_output(get_trees[i], args, file_name) parameters_to_json(generated_sample_parameters, generated_protracted_speciation_process_parameters, headers, file_name) except: pass
def main(argv=None): parser = argparse.ArgumentParser(description="Training driver") parser.add_argument("-v", "--verbose", default=False, action="store_true") parser.add_argument("-c", "--config_file", default="config.json") parsed_arguments = parser.parse_args() arguments = vars(parsed_arguments) is_verbose = arguments['verbose'] config_file = arguments['config_file'] if is_verbose: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) with open(config_file) as fid: config = json.load(fid) initialize_defaults(config) data_dir = config.get("data_dir") output_path = config.get("output_path") ldr = loader.Loader(data_dir, config) model = Model(is_verbose) if tf.gfile.Exists(output_path): tf.gfile.DeleteRecursively(output_path) tf.gfile.MakeDirs(output_path) run_training(model, ldr, config)
def __init__(self, size_x, size_y, yaml, max_e=1000, fps=20): self.x = size_x self.y = size_y self.max_entities = max_e self.entities = [] self.fps = fps self.loader = loader.Loader(yaml)
def __init__(self): self.score = 0 self.loader = loader.Loader() self.gamemode = fsm([('Playing', 'GameOver', lambda x: x == 'GameOver'), ('MainMenu', 'Playing', lambda x: x == 'NewGame', lambda x, y: self.newgame()), ('MainMenu', 'Playing', lambda x: x == 'Resume'), ('Playing', 'MainMenu', lambda x: x == 'MainMenu'), ('GameOver', 'Playing', lambda x: x == 'GameOver')]) self.gamemode.start('MainMenu') self.menu = kezmenu.KezMenu(['SPACE ACE!', lambda: True], ['New Game', lambda: self.gamemode.event('NewGame')], ['Exit', lambda: pygame.event.post(pygame.event.Event(pygame.QUIT))]) self.menu.center = True # enable horizontal menu item centering self.menu.color = WHITE self.menu.focus_color = GREEN self.menu.options[0]['focus_color'] = RED self.menu.options[0]['color'] = RED self.menu.options[0]['font'] = pygame.font.Font("fonts/OverdriveInline.ttf", 75) self.menu._fixSize() self.menu.center_at(SCREEN_CENTER) # center entire menu to screen self.enemy_list = pygame.sprite.Group() self.player_list = pygame.sprite.Group() self.all_sprites_list = pygame.sprite.Group() self.events = None # Create the player self.player = sprites.Player(self.loader.PLAYER_IMAGE) self.all_sprites_list.add(self.player) self.player_list.add(self.player)
def main(): parser = argparse.ArgumentParser( description= 'Generate sample tree data under the protracted speciation model') parser.add_argument('--t', metavar='N', nargs='+', help='Incoming tree parameter') parser.add_argument('--s', metavar='N', nargs='+', help='Incoming tree parameter') parser.add_argument('--output') args = parser.parse_args() args.parser = parser config = cl.Loader(args.output) headers = config.load_headers() for i in args.s: file = i[:-14] + '_t_params.json' with open(file, 'r') as f: d = json.load(f) with open(i, 'r') as r: d2 = json.load(r) d.update(d2) dtc.write_params_to_txt(d, headers)
def main(): import os import time import tempoclock import loader import server ctl = server.connect(spew=True) ctl.sendMsg('/dumpOSC', 1) SYNTHDEF_PATH = os.path.join(os.path.expanduser('~'), '.pksampler', 'synthdefs') SYNTHDEFS = ( 'JASStereoSamplePlayer.scsyndef', 'JASSine.scsyndef', ) for fname in SYNTHDEFS: ctl.sendMsg('/d_load', os.path.join(SYNTHDEF_PATH, fname)) player = Player(ctl) ldr = loader.Loader(ctl) bid = ldr.load('/Users/patrick/.pksampler/clicks/click_1.wav') clock = tempoclock.TempoClock(140.0) beats = [clock.spb() * i for i in range(100)] now = time.time() + 1 freqs = [440, 550, 220, 200, 460] synth = Synth() synth.name = 'JASSine' for seconds in beats: abs = now + seconds freqs = freqs[1:] + freqs[:1] synth['freq'] = freqs[0] player.play(synth, abs, abs + 1)
def __init__(self): load = loader.Loader("TETRIS") load.read() memory = mmu.MMU(load.data) processor = cpu.CPU(memory) display = video.Video() display.mainloop(processor.step)
def load_tests(): ''' Create a TestLoader and load tests for the directory given by the config. ''' testloader = loader_mod.Loader() log.test_log.message(terminal.separator()) log.test_log.message('Loading Tests', bold=True) testloader.load_root(config.config.directory) return testloader
def setup(self): self.usage = [ 'usage:', 'start process_name [waittime]', 'stop process_name stop_dep?', 'status process_name collect_dep?', 'restart process_name restart_dep?', 'ls [user]' ] self.usage = '\n '.join(self.usage) super(LauncherServer, self).setup() self.loader = loader.Loader(self.server.dconn) self.load()
def __init__(self, cfg, info): self.cfg = cfg self.info = info # set seed before calling loader ? tf.set_random_seed(cfg.seed) self.dataloader = loader.Loader(cfg) self.model = model.Model(cfg) self.update_csv_path() self.make_paths() self.make_dirs() self.n_train, self.n_val, self.n_test = self.get_data_info()
def setup(self, bottom, top): # params is a python dictionary with layer parameters. params = yaml.load(self.param_str) # Check the paramameters for validity. self.check_params(params) db_dir = params['db_dir'] lmdb_db_path_q, lmdb_db_path_t, meta_db_path_q, meta_db_path_t = self.define_db_names( db_dir) self.max_query_size = params['max_query_size'] self.im_shape = params['im_shape'] self.pos_test_num = params['pos_test_num'] self.neg_test_num = params['neg_test_num'] caffe_root = params['caffe_root'] self.group_cnt = params['group_cnt'] self.filterQFile = '' if (os.path.exists(db_dir + '/dup')): self.filterQFile = db_dir + '/dup' self.q_loader = loader.Loader(lmdb_db_path_q, meta_db_path_q, caffe_root, self.im_shape[1], filterQFile=self.filterQFile) self.q_loader.set_group_cnt(self.group_cnt) self.t_loader = loader.Loader(lmdb_db_path_t, meta_db_path_t, caffe_root, self.im_shape[1]) self.t_loader.set_group_cnt(self.group_cnt) self.batch_size = self.pos_test_num + self.neg_test_num + self.max_query_size #data top[0].reshape(self.batch_size, self.im_shape[0], self.im_shape[1], self.im_shape[2]) #label top[1].reshape(self.batch_size) #current group id top[2].reshape(1)
def loadText(self, e): dlg = wx.FileDialog(self, "Wybierz plik do otwarcia", "", "*.*", style=wx.FD_OPEN) if dlg.ShowModal() == wx.ID_OK: self.textFile = dlg.GetFilename() dir = dlg.GetDirectory() self.sub = loader.Loader(os.path.join(dir, self.textFile)) dlg.Destroy() self.text = self.sub.getText()
def setUp(self): self.repo = rubiks_repository.RubiksRepository() modules = [x.get_module_path() for x in self.repo.get_modules()] kube_loader.load(*modules) self.collection = output.OutputCollection(loader.Loader(self.repo), self.repo) self.collection.confidential = output.ConfidentialOutput self.collection.written = [] self.collection.clusterless['testns'] = {'namespace-testns': FakeOutputMember(self.collection, 'namespace-testns')} self.collection.clusterless['testns']['namespace-testns'].kobj = kube_objs.Namespace('testns') self.collection.clusterless['testns']['namespace-testns'].is_namespace = True self.collection.clusterless['testns']['namespace-testns'].cluster = None
def __init__(self, dataDir): """init the internal instances of stuff""" self.dataDir = dataDir self.logger = logging.getLogger("util") self.logger.debug("Data dir is: " + dataDir) self.problemSet = loader.Loader(dataDir).problemsDictionary self.evaluator = CodeRunner.Evaluate(dataDir) self.langs = self.evaluator.getLangs() self.logger.info("Supporting the following languages: " + str(self.langs)) self.passwd = json.load(open(os.path.join(dataDir, "passwd.json"))) self.scoreboard = scoring.ScoreBoard(dataDir)
def run_test(distance, angle, start, end, plot_): if angle < 10: angle_str = "0" + str(int(angle)) else: angle_str = str(int(angle)) if distance < 10: distance_str = "0" + str(int(distance)) else: distance_str = str(int(distance)) stri = "A2_CH_" + angle_str + '_' + distance_str loaded = loader.Loader("../measurements/measurement_1/", stri) signals = loaded.get_measurements() # cut them to the beginning of a signal if end < 0: end = len(signals[0]) for i in range(0, len(signals)): signals[i] = signals[i][start:end] #also plot them if plot_: plt.figure() x = range(0, len(signals[0])) for i in range(0, len(signals)): plt.subplot(8, 1, i + 1) plt.plot(x, signals[i]) plt.show() #main calculation array = GeometryLibrary.calculateMicrophoneArray_2( 0.35, GeometryLibrary.getPoint(0, 0)) source_pos = GeometryLibrary.getPoint(0, distance) distances = [] #TODO calculate them for i in range(0, len(signals)): distances.append(GeometryLibrary.distance(source_pos, array[i])) #print(distances[i]) speed_of_sound = 343.3 sample_rate = loaded.get_meta_data()["sampling_rate"] calib = calibrator.Calibrator(signals, distances, speed_of_sound, sample_rate) ks = calib.run_calibration() print(ks)
def __init__(self, num_p, num_q, k_ability, k_difficulty, num_classes): """ Create blocks and initialize members """ self.loader = loader.Loader() self.num_classes = num_classes self.num_participants = num_p self.num_questions = num_q self.k_ability = k_ability self.k_difficulty = k_difficulty self.feature = feature.FeatureRepresenter(self.num_participants, self.num_questions, k_ability, k_difficulty, 2) self.block1 = block1.Block1(k_ability + k_difficulty + 2) self.block2 = block2.Block2(self.num_participants, self.num_classes)
def setup(self, bottom, top): params = yaml.load(self.param_str) self.check_params(params) caffe_root = params['caffe_root'] db_dir = params['db_dir'] self.group_cnt = params['group_cnt'] self.batch_size = params['batch_size'] self.set_triplet_size = params['set_triplet_size'] self.im_shape = params['im_shape'] lmdb_db_path = db_dir + '/' + 'test_all' meta_db_path = db_dir + '/' + 'meta_test_all' self.loader = loader.Loader(lmdb_db_path, meta_db_path, caffe_root, self.im_shape[1]) self.group_id = 0
def do_rerun(): # Init early parts of log with RunLogHandler() as log_handler: # Load previous results results = result.InternalSavedResults.load( os.path.join(config.config.result_path, config.constants.pickle_filename)) rerun_suites = (suite.uid for suite in results if suite.unsucessful) # Use loader to load suites loader = loader_mod.Loader() test_schedule = loader.load_schedule_for_suites(*rerun_suites) # Execute the tests run_schedule(test_schedule, log_handler)
def load_model(model_path, is_verbose, batch_size): # TODO, (awni), would be good to simplify loading and # not rely on random seed for validation set. config_file = os.path.join(model_path, "config.json") with open(config_file, 'r') as fid: config = json.load(fid) data_conf = config['data'] ldr = loader.Loader(data_conf['path'], batch_size, seed=data_conf['seed']) evl = evaler.Evaler(model_path, is_verbose, batch_size=batch_size, class_counts=None) return evl, ldr
def make_train_dataset(): global vals __loader = loader.Loader() __loader.load() vals = __loader.to_percentage_from_start() #vals = __loader.to_percentage_from_last() # 正規化(n_samples, n_features) #scaler = MinMaxScaler(feature_range=(0, 1)) #vals = scaler.fit_transform(vals) __loader.save_data() df = pd.DataFrame(vals) df.plot(figsize=(15, 5)).get_figure().savefig("graph_orig.png")
def setup(self, bottom, top): params = yaml.load(self.param_str) self.check_params(params) caffe_root = params['caffe_root'] db_dir = params['db_dir'] self.group_cnt = params['group_cnt'] self.class_num = params['class_num'] self.train_per_class = params['train_per_class'] self.test_per_class = params['test_per_class'] self.batch_len = params['batch_len'] self.im_shape = params['im_shape'] lmdb_db_path = db_dir + '/' + 'test_all' meta_db_path = db_dir + '/' + 'meta_test_all' self.loader = loader.Loader(lmdb_db_path, meta_db_path, caffe_root, self.im_shape[1]) self.group_size = self.class_num * self.train_per_class + self.class_num * self.test_per_class
def set_up(self, window_width_and_height): self.__core = core.Core(self.core_size) self.gui = window.GUI(window_width_and_height, self.__core) self.__core.set_gui_callback(self.gui) main_loader = loader.Loader(self.__core) # load instructions first_warior = warior.Warior("first_warior", "#ff0000") # todo index first_warior.set_gui_callback(self.gui) self.__core.add_warior(first_warior) start_index = main_loader.load_file_at(first_warior, "dwarf.txt", 0, self.core_size) first_warior.add_process(start_index) second_warior = warior.Warior("second_warior", "#00ff00") second_warior.set_gui_callback(self.gui) self.__core.add_warior(second_warior) start_index = main_loader.load_file_at(second_warior, "agony3.1.txt", 100, self.core_size) second_warior.add_process(start_index)
def do_run(): # Initialize early parts of the log. with RunLogHandler() as log_handler: if config.config.uid: uid_ = uid.UID.from_uid(config.config.uid) if isinstance(uid_, uid.TestUID): log.test_log.error( 'Unable to run a standalone test.\n' 'Gem5 expects test suites to be the smallest unit ' ' of test.\n\n' 'Pass a SuiteUID instead.') return test_schedule = loader_mod.Loader().load_schedule_for_suites(uid_) if get_config_tags(): log.test_log.warn( "The '--uid' flag was supplied," " '--include-tags' and '--exclude-tags' will be ignored.") else: test_schedule = load_tests().schedule # Filter tests based on tags filter_with_config_tags(test_schedule) # Execute the tests run_schedule(test_schedule, log_handler)
def get_command_line_input(self, argv): '''Parse the command line input that specifies data file paths.''' data_file_path = "" try: opts, _ = getopt.getopt(argv, "", ["path=", "start=", "stop="]) except getopt.GetoptError: print( "article_analytics.py --path <pattern_of_path_to_data_files> --start \ <start_of_file_index_range> --end <end_of_file_index_range>") sys.exit(2) for option, value in opts: if option == "--path": data_file_path = value elif option == "--start": self.range_start = int(value) else: self.range_end = int(value) data_loader = loader.Loader() _, file_extension = os.path.splitext(data_file_path) if file_extension == ".json": data_loader.load_json(data_file_path, self.range_start, self.range_end) self.df = data_loader.get_data() elif file_extension == ".csv": data_loader.load_csv(data_file_path, self.range_start, self.range_end) self.df = data_loader.get_data() else: print( "Unrecognizable data file format. Data file must be in .csv or .json format!" ) sys.exit()
def setup(self, bottom, top): params = yaml.load(self.param_str) self.check_params(params) caffe_root = params['caffe_root'] db_dir = params['db_dir'] self.group_cnt = params['group_cnt'] self.batch_size = params['batch_size'] self.set_triplet_size = params['set_triplet_size'] self.im_shape = params['im_shape'] for key in params: print '|' + key + '|' if ('train_set_size' in params): self.train_set_size = params['train_set_size'] self.test_set_size = params['test_set_size'] self.test_pos_size = params['test_pos_size'] self.test_neg_size = self.test_set_size - self.test_pos_size else: self.train_set_size = -1 self.test_set_size = -1 self.test_pos_size = -1 self.test_neg_size = -1 if ('meta_mode' in params): self.meta_mode = True print 'META MODE ENABLED' else: self.meta_mode = False print 'META MODE DISABLED' lmdb_db_path = db_dir + '/' + 'test_all' meta_db_path = db_dir + '/' + 'meta_test_all' self.loader = loader.Loader(lmdb_db_path, meta_db_path, caffe_root, self.im_shape[1]) self.update_group_ids() self.group_id = 0
def main(): parser = argparse.ArgumentParser( description= 'Generate sample tree data under the protracted speciation model') parser.add_argument('--ts', metavar='N', nargs='+', help='Incoming trees') parser.add_argument('--output_dir') parser.add_argument('--params', metavar='N', nargs='+', help='Incoming parameter files') args = parser.parse_args() args.parser = parser config = cl.Loader(args.output_dir) # get seqgen parameters get_seqgen_param = config.get_seq_gen_values() # write seqgen params to file for i in range(len(args.ts)): id = args.ts[i].split('.')[0] seqgen_params_with_id = {'id': id, **get_seqgen_param} parameters_to_json(id, seqgen_params_with_id) # generate seqs seqgen_to_file(args.ts, get_seqgen_param)
def main_screen(self): self.screen = Tk() self.code_loader = loader.Loader(password) self.entry_test = autocomplete.AutocompleteEntryBox(lista, self.screen) self.screen.geometry("600x500+100+100") self.screen.title("LoaderGui") Label(text="LoaderGui V0.01", bg="grey", width="300", height="2", font=("Calibri", 13)).pack() Label(text="").pack() Label(self.screen, text="Uni ID").pack() self.entry_test.pack() Label(text="").pack() Button(text="Upload code", height="1", width="30", command=self.load_screen).pack() Label(text="").pack() Button(text="Stop robot", height="1", width="30", command=self.stop).pack() Label(text="").pack() Button(text="Fetch output", height="1", width="30", command=self.load_screen).pack() Label(text="").pack() self.screen.mainloop()