def get_box_yaw_angle_in_camera_coords(box: Box): """ Calculate the heading angle, using the convention in KITTI labels. :param box: bouding box :return: """ box_corners = box.corners() v = box_corners[:, 0] - box_corners[:, 4] heading_angle = np.arctan2(-v[2], v[0]) return heading_angle
def get_box_yaw_angle_in_world_coords(box: Box): """ Calculate the heading angle, using world coordinates. :param box: bouding box :return: """ box_corners = box.corners() v = box_corners[:, 0] - box_corners[:, 4] heading_angle = np.arctan2(v[1], v[0]) return heading_angle
def project_kitti_box_to_image( box: Box, p_left: np.ndarray, imsize: Tuple[int, int]) -> Union[None, Tuple[int, int, int, int]]: """Projects 3D box into KITTI image FOV. Args: box: 3D box in KITTI reference frame. p_left: <np.float: 3, 4>. Projection matrix. imsize: (width, height). Image size. Returns: (xmin, ymin, xmax, ymax). Bounding box in image plane or None if box is not in the image. """ # Create a new box. box = box.copy() # KITTI defines the box center as the bottom center of the object. # We use the true center, so we need to adjust half height in negative y direction. box.translate(np.array([0, -box.wlh[2] / 2, 0])) # Check that some corners are inside the image. corners = np.array( [corner for corner in box.corners().T if corner[2] > 0]).T if len(corners) == 0: return None # Project corners that are in front of the camera to 2d to get bbox in pixel coords. imcorners = view_points(corners, p_left, normalize=True)[:2] bbox = (np.min(imcorners[0]), np.min(imcorners[1]), np.max(imcorners[0]), np.max(imcorners[1])) # Crop bbox to prevent it extending outside image. bbox_crop = tuple(max(0, b) for b in bbox) bbox_crop = ( min(imsize[0], bbox_crop[0]), min(imsize[0], bbox_crop[1]), min(imsize[0], bbox_crop[2]), min(imsize[1], bbox_crop[3]), ) # Detect if a cropped box is empty. if bbox_crop[0] >= bbox_crop[2] or bbox_crop[1] >= bbox_crop[3]: return None return bbox_crop
def get_box_corners(transformed_box: Box, cam_intrinsic_mtx: np.array, frustum_pointnet_convention=True): box_corners_on_cam_coord = transformed_box.corners() # Regarrange to conform Frustum-pointnet's convention if frustum_pointnet_convention: rearranged_idx = [0, 3, 7, 4, 1, 2, 6, 5] box_corners_on_cam_coord = box_corners_on_cam_coord[:, rearranged_idx] assert np.allclose((box_corners_on_cam_coord[:, 0] + box_corners_on_cam_coord[:, 6]) / 2, np.array(transformed_box.center)) # For perspective transformation, the normalization should set to be True box_corners_on_image = view_points(box_corners_on_cam_coord, view=cam_intrinsic_mtx, normalize=True) return box_corners_on_image