def parseMapConfig(config): # Parse config object # ADD PLOTORDER TO CONFIG? OTHER THINGS LIKE COLORMAPS? topofile = None roadfolder = None cityfile = None roadcolor = '6E6E6E' countrycolor = '177F10' watercolor = 'B8EEFF' ALPHA = 0.7 outputdir = None oceanfile = None try: config1 = config['mapdata'] if 'dem' in config1: topofile = config1['dem']['file'] if os.path.exists(topofile) is False: print('DEM not valid - hillshade will not be possible\n') if 'ocean' in config1: oceanfile = config1['ocean']['file'] try: oceanref = config1['ocean']['shortref'] except: oceanref = 'unknown' if 'roads' in config1: roadfolder = config1['roads']['file'] if os.path.exists(roadfolder) is False: print('roadfolder not valid - roads will not be displayed\n') roadfolder = None try: roadref = config1['roads']['shortref'] except: roadref = 'unknown' if 'cities' in config1: cityfile = config1['cities']['file'] try: cityref = config1['cities']['shortref'] except: cityref = 'unknown' if os.path.exists(cityfile): try: #PagerCity(cityfile) BasemapCities.loadFromGeoNames(cityfile=cityfile) except Exception as e: print(e) print('cities file not valid - cities will not be displayed\n') cityfile = None else: print('cities file not valid - cities will not be displayed\n') cityfile = False if 'roadcolor' in config1['colors']: roadcolor = config1['colors']['roadcolor'] if 'countrycolor' in config1['colors']: countrycolor = config1['colors']['countrycolor'] if 'watercolor' in config1['colors']: watercolor = config1['colors']['watercolor'] if 'alpha' in config1['colors']: ALPHA = float(config1['colors']['alpha']) try: outputdir = config['output']['folder'] except: outputdir = None except Exception as e: print(('%s - mapdata missing from or misformatted in config' % e)) countrycolor = '#'+countrycolor watercolor = '#'+watercolor roadcolor = '#'+roadcolor mapin = {'topofile': topofile, 'roadfolder': roadfolder, 'cityfile': cityfile, 'roadcolor': roadcolor, 'countrycolor': countrycolor, 'watercolor': watercolor, 'ALPHA': ALPHA, 'outputdir': outputdir, 'roadref': roadref, 'cityref': cityref, 'oceanfile': oceanfile, 'oceanref': oceanref} return mapin
def modelMap(grids, shakefile=None, suptitle=None, inventory_shapefile=None, plotorder=None, maskthreshes=None, colormaps=None, boundaries=None, zthresh=0, scaletype='continuous', lims=None, logscale=False, ALPHA=0.7, maproads=True, mapcities=True, isScenario=False, roadfolder=None, topofile=None, cityfile=None, oceanfile=None, roadcolor='#6E6E6E', watercolor='#B8EEFF', countrycolor='#177F10', outputdir=None, savepdf=True, savepng=True, showplots=False, roadref='unknown', cityref='unknown', oceanref='unknown', printparam=False, ds=True, dstype='mean', upsample=False): """ This function creates maps of mapio grid layers (e.g. liquefaction or landslide models with their input layers) All grids must use the same bounds TO DO change so that all input layers do not have to have the same bounds, test plotting multiple probability layers, and add option so that if PDF and PNG aren't output, opens plot on screen using plt.show() :param grids: Dictionary of N layers and metadata formatted like: maplayers['layer name']={ 'grid': mapio grid2D object, 'label': 'label for colorbar and top line of subtitle', 'type': 'output or input to model', 'description': 'detailed description of layer for subtitle'}. Layer names must be unique. :type name: Dictionary or Ordered dictionary - import collections; grids = collections.OrderedDict() :param shakefile: optional ShakeMap file (url or full file path) to extract information for labels and folder names :type shakefile: Shakemap Event Dictionary :param suptitle: This will be displayed at the top of the plots and in the figure names :type suptitle: string :param plotorder: List of keys describing the order to plot the grids, if None and grids is an ordered dictionary, it will use the order of the dictionary, otherwise it will choose order which may be somewhat random but it will always put a probability grid first :type plotorder: list :param maskthreshes: N x 1 array or list of lower thresholds for masking corresponding to order in plotorder or order of OrderedDict if plotorder is None. If grids is not an ordered dict and plotorder is not specified, this will not work right. If None (default), nothing will be masked :param colormaps: List of strings of matplotlib colormaps (e.g. cm.autumn_r) corresponding to plotorder or order of dictionary if plotorder is None. The list can contain both strings and None e.g. colormaps = ['cm.autumn', None, None, 'cm.jet'] and None's will default to default colormap :param boundaries: None to show entire study area, 'zoom' to zoom in on the area of action (only works if there is a probability layer) using zthresh as a threshold, or a dictionary defining lats and lons in the form of boundaries.xmin = minlon, boundaries.xmax = maxlon, boundaries.ymin = min lat, boundaries.ymax = max lat :param zthresh: threshold for computing zooming bounds, only used if boundaries = 'zoom' :type zthresh: float :param scaletype: Type of scale for plotting, 'continuous' or 'binned' - will be reflected in colorbar :type scaletype: string :param lims: None or Nx1 list of tuples or numpy arrays corresponding to plotorder defining the limits for saturating the colorbar (vmin, vmax) if scaletype is continuous or the bins to use (clev) if scaletype if binned. The list can contain tuples, arrays, and Nones, e.g. lims = [(0., 10.), None, (0.1, 1.5), np.linspace(0., 1.5, 15)]. When None is specified, the program will estimate the limits, when an array is specified but the scale type is continuous, vmin will be set to min(array) and vmax will be set to max(array) :param lims: None or Nx1 list of Trues and Falses corresponding to plotorder defining whether to use a linear or log scale (log10) for plotting the layer. This will be reflected in the labels :param ALPHA: Transparency for mapping, if there is a hillshade that will plot below each layer, it is recommended to set this to at least 0.7 :type ALPHA: float :param maproads: Whether to show roads or not, default True, but requires that roadfile is specified and valid to work :type maproads: boolean :param mapcities: Whether to show cities or not, default True, but requires that cityfile is specified and valid to work :type mapcities: boolean :param isScenario: Whether this is a scenario (True) or a real event (False) (default False) :type isScenario: boolean :param roadfolder: Full file path to folder containing road shapefiles :type roadfolder: string :param topofile: Full file path to topography grid (GDAL compatible) - this is only needed to make a hillshade if a premade hillshade is not specified :type topofile: string :param cityfile: Full file path to Pager file containing city & population information :type cityfile: string :param roadcolor: Color to use for roads, if plotted, default #6E6E6E :type roadcolor: Hex color or other matplotlib compatible way of defining color :param watercolor: Color to use for oceans, lakes, and rivers, default #B8EEFF :type watercolor: Hex color or other matplotlib compatible way of defining color :param countrycolor: Color for country borders, default #177F10 :type countrycolor: Hex color or other matplotlib compatible way of defining color :param outputdir: File path for outputting figures, if edict is defined, a subfolder based on the event id will be created in this folder. If None, will use current directory :param savepdf: True to save pdf figure, False to not :param savepng: True to save png figure, False to not :param ds: True to allow downsampling for display (necessary when arrays are quite large, False to not allow) :param dstype: What function to use in downsampling, options are 'min', 'max', 'median', or 'mean' :param upsample: True to upsample the layer to the DEM resolution for better looking hillshades :returns: * PDF and/or PNG of map * Downsampled and trimmed version of input grids. If no modification was needed for plotting, this will be identical to grids but without the metadata """ if suptitle is None: suptitle = ' ' plt.ioff() defaultcolormap = cm.jet if shakefile is not None: edict = ShakeGrid.load(shakefile, adjust='res').getEventDict() temp = ShakeGrid.load(shakefile, adjust='res').getShakeDict() edict['eventid'] = temp['shakemap_id'] edict['version'] = temp['shakemap_version'] else: edict = None # Get output file location if outputdir is None: print('No output location given, using current directory for outputs\n') outputdir = os.getcwd() if edict is not None: outfolder = os.path.join(outputdir, edict['event_id']) else: outfolder = outputdir if not os.path.isdir(outfolder): os.makedirs(outfolder) # Get plotting order, if not specified if plotorder is None: plotorder = list(grids.keys()) # Get boundaries to use for all plots cut = True if boundaries is None: cut = False keytemp = list(grids.keys()) boundaries = grids[keytemp[0]]['grid'].getGeoDict() elif boundaries == 'zoom': # Find probability layer (will just take the maximum bounds if there is # more than one) keytemp = list(grids.keys()) key1 = [key for key in keytemp if 'model' in key.lower()] if len(key1) == 0: print('Could not find model layer to use for zoom, using default boundaries') keytemp = list(grids.keys()) boundaries = grids[keytemp[0]]['grid'].getGeoDict() else: lonmax = -1.e10 lonmin = 1.e10 latmax = -1.e10 latmin = 1.e10 for key in key1: # get lat lons of areas affected and add, if no areas affected, # switch to shakemap boundaries temp = grids[key]['grid'] xmin, xmax, ymin, ymax = temp.getBounds() lons = np.linspace(xmin, xmax, temp.getGeoDict().nx) lats = np.linspace(ymax, ymin, temp.getGeoDict().ny) # backwards so it plots right row, col = np.where(temp.getData() > float(zthresh)) lonmin = lons[col].min() lonmax = lons[col].max() latmin = lats[row].min() latmax = lats[row].max() # llons, llats = np.meshgrid(lons, lats) # make meshgrid # llons1 = llons[temp.getData() > float(zthresh)] # llats1 = llats[temp.getData() > float(zthresh)] # if llons1.min() < lonmin: # lonmin = llons1.min() # if llons1.max() > lonmax: # lonmax = llons1.max() # if llats1.min() < latmin: # latmin = llats1.min() # if llats1.max() > latmax: # latmax = llats1.max() boundaries1 = {'dx': 100, 'dy': 100., 'nx': 100., 'ny': 100} # dummy fillers, only really care about bounds if xmin < lonmin-0.15*(lonmax-lonmin): boundaries1['xmin'] = lonmin-0.1*(lonmax-lonmin) else: boundaries1['xmin'] = xmin if xmax > lonmax+0.15*(lonmax-lonmin): boundaries1['xmax'] = lonmax+0.1*(lonmax-lonmin) else: boundaries1['xmax'] = xmax if ymin < latmin-0.15*(latmax-latmin): boundaries1['ymin'] = latmin-0.1*(latmax-latmin) else: boundaries1['ymin'] = ymin if ymax > latmax+0.15*(latmax-latmin): boundaries1['ymax'] = latmax+0.1*(latmax-latmin) else: boundaries1['ymax'] = ymax boundaries = GeoDict(boundaries1, adjust='res') else: # SEE IF BOUNDARIES ARE SAME AS BOUNDARIES OF LAYERS keytemp = list(grids.keys()) tempgdict = grids[keytemp[0]]['grid'].getGeoDict() if np.abs(tempgdict.xmin-boundaries['xmin']) < 0.05 and \ np.abs(tempgdict.ymin-boundaries['ymin']) < 0.05 and \ np.abs(tempgdict.xmax-boundaries['xmax']) < 0.05 and \ np.abs(tempgdict.ymax - boundaries['ymax']) < 0.05: print('Input boundaries are almost the same as specified boundaries, no cutting needed') boundaries = tempgdict cut = False else: try: if boundaries['xmin'] > boundaries['xmax'] or \ boundaries['ymin'] > boundaries['ymax']: print('Input boundaries are not usable, using default boundaries') keytemp = list(grids.keys()) boundaries = grids[keytemp[0]]['grid'].getGeoDict() cut = False else: # Build dummy GeoDict boundaries = GeoDict({'xmin': boundaries['xmin'], 'xmax': boundaries['xmax'], 'ymin': boundaries['ymin'], 'ymax': boundaries['ymax'], 'dx': 100., 'dy': 100., 'ny': 100., 'nx': 100.}, adjust='res') except: print('Input boundaries are not usable, using default boundaries') keytemp = list(grids.keys()) boundaries = grids[keytemp[0]]['grid'].getGeoDict() cut = False # Pull out bounds for various uses bxmin, bxmax, bymin, bymax = boundaries.xmin, boundaries.xmax, boundaries.ymin, boundaries.ymax # Determine if need a single panel or multi-panel plot and if multi-panel, # how many and how it will be arranged fig = plt.figure() numpanels = len(grids) if numpanels == 1: rowpan = 1 colpan = 1 # create the figure and axes instances. fig.set_figwidth(5) elif numpanels == 2 or numpanels == 4: rowpan = np.ceil(numpanels/2.) colpan = 2 fig.set_figwidth(13) else: rowpan = np.ceil(numpanels/3.) colpan = 3 fig.set_figwidth(15) if rowpan == 1: fig.set_figheight(rowpan*6.0) else: fig.set_figheight(rowpan*5.3) # Need to update naming to reflect the shakemap version once can get # getHeaderData to work, add edict['version'] back into title, maybe # shakemap id also? fontsizemain = 14. fontsizesub = 12. fontsizesmallest = 10. if rowpan == 1.: fontsizemain = 12. fontsizesub = 10. fontsizesmallest = 8. if edict is not None: if isScenario: title = edict['event_description'] else: timestr = edict['event_timestamp'].strftime('%b %d %Y') title = 'M%.1f %s v%i - %s' % (edict['magnitude'], timestr, edict['version'], edict['event_description']) plt.suptitle(title+'\n'+suptitle, fontsize=fontsizemain) else: plt.suptitle(suptitle, fontsize=fontsizemain) clear_color = [0, 0, 0, 0.0] # Cut all of them and release extra memory xbuff = (bxmax-bxmin)/10. ybuff = (bymax-bymin)/10. cutxmin = bxmin-xbuff cutymin = bymin-ybuff cutxmax = bxmax+xbuff cutymax = bymax+ybuff if cut is True: newgrids = collections.OrderedDict() for k, layer in enumerate(plotorder): templayer = grids[layer]['grid'] try: newgrids[layer] = {'grid': templayer.cut(cutxmin, cutxmax, cutymin, cutymax, align=True)} except Exception as e: print(('Cutting failed, %s, continuing with full layers' % e)) newgrids = grids continue del templayer gc.collect() else: newgrids = grids tempgdict = newgrids[list(grids.keys())[0]]['grid'].getGeoDict() # Upsample layers to same as topofile if desired for better looking hillshades if upsample is True and topofile is not None: try: topodict = GDALGrid.getFileGeoDict(topofile) if topodict.dx >= tempgdict.dx or topodict.dy >= tempgdict.dy: print('Upsampling not possible, resolution of results already smaller than DEM') pass else: tempgdict1 = GeoDict({'xmin': tempgdict.xmin-xbuff, 'ymin': tempgdict.ymin-ybuff, 'xmax': tempgdict.xmax+xbuff, 'ymax': tempgdict.ymax+ybuff, 'dx': topodict.dx, 'dy': topodict.dy, 'nx': topodict.nx, 'ny': topodict.ny}, adjust='res') tempgdict2 = tempgdict1.getBoundsWithin(tempgdict) for k, layer in enumerate(plotorder): newgrids[layer]['grid'] = newgrids[layer]['grid'].subdivide(tempgdict2) except: print('Upsampling failed, continuing') # Downsample all of them for plotting, if needed, and replace them in # grids (to save memory) tempgrid = newgrids[list(grids.keys())[0]]['grid'] xsize = tempgrid.getGeoDict().nx ysize = tempgrid.getGeoDict().ny inchesx, inchesy = fig.get_size_inches() divx = int(np.round(xsize/(500.*inchesx))) divy = int(np.round(ysize/(500.*inchesy))) xmin, xmax, ymin, ymax = tempgrid.getBounds() gdict = tempgrid.getGeoDict() # Will be replaced if downsampled del tempgrid gc.collect() if divx <= 1: divx = 1 if divy <= 1: divy = 1 if (divx > 1. or divy > 1.) and ds: if dstype == 'max': func = np.nanmax elif dstype == 'min': func = np.nanmin elif dstype == 'med': func = np.nanmedian else: func = np.nanmean for k, layer in enumerate(plotorder): layergrid = newgrids[layer]['grid'] dat = block_reduce(layergrid.getData().copy(), block_size=(divy, divx), cval=float('nan'), func=func) if k == 0: lons = block_reduce(np.linspace(xmin, xmax, layergrid.getGeoDict().nx), block_size=(divx,), func=np.mean, cval=float('nan')) if math.isnan(lons[-1]): lons[-1] = lons[-2] + (lons[1]-lons[0]) lats = block_reduce(np.linspace(ymax, ymin, layergrid.getGeoDict().ny), block_size=(divy,), func=np.mean, cval=float('nan')) if math.isnan(lats[-1]): lats[-1] = lats[-2] + (lats[1]-lats[0]) gdict = GeoDict({'xmin': lons.min(), 'xmax': lons.max(), 'ymin': lats.min(), 'ymax': lats.max(), 'dx': np.abs(lons[1]-lons[0]), 'dy': np.abs(lats[1]-lats[0]), 'nx': len(lons), 'ny': len(lats)}, adjust='res') newgrids[layer]['grid'] = Grid2D(dat, gdict) del layergrid, dat else: lons = np.linspace(xmin, xmax, xsize) lats = np.linspace(ymax, ymin, ysize) # backwards so it plots right side up #make meshgrid llons1, llats1 = np.meshgrid(lons, lats) # See if there is an oceanfile for masking bbox = PolygonSH(((cutxmin, cutymin), (cutxmin, cutymax), (cutxmax, cutymax), (cutxmax, cutymin))) if oceanfile is not None: try: f = fiona.open(oceanfile) oc = next(f) f.close shapes = shape(oc['geometry']) # make boundaries into a shape ocean = shapes.intersection(bbox) except: print('Not able to read specified ocean file, will use default ocean masking') oceanfile = None if inventory_shapefile is not None: try: f = fiona.open(inventory_shapefile) invshp = list(f.items(bbox=(bxmin, bymin, bxmax, bymax))) f.close() inventory = [shape(inv[1]['geometry']) for inv in invshp] except: print('unable to read inventory shapefile specified, will not plot inventory') inventory_shapefile = None # # Find cities that will be plotted if mapcities is True and cityfile is not None: try: mycity = BasemapCities.loadFromGeoNames(cityfile=cityfile) bcities = mycity.limitByBounds((bxmin, bxmax, bymin, bymax)) #bcities = bcities.limitByPopulation(40000) bcities = bcities.limitByGrid(nx=4, ny=4, cities_per_grid=2) except: print('Could not read in cityfile, not plotting cities') mapcities = False cityfile = None # Load in topofile if topofile is not None: try: topomap = GDALGrid.load(topofile, resample=True, method='linear', samplegeodict=gdict) except: topomap = GMTGrid.load(topofile, resample=True, method='linear', samplegeodict=gdict) topodata = topomap.getData().copy() # mask oceans if don't have ocean shapefile if oceanfile is None: topodata = maskoceans(llons1, llats1, topodata, resolution='h', grid=1.25, inlands=True) else: print('no hillshade is possible\n') topomap = None topodata = None # Load in roads, if needed if maproads is True and roadfolder is not None: try: roadslist = [] for folder in os.listdir(roadfolder): road1 = os.path.join(roadfolder, folder) shpfiles = glob.glob(os.path.join(road1, '*.shp')) if len(shpfiles): shpfile = shpfiles[0] f = fiona.open(shpfile) shapes = list(f.items(bbox=(bxmin, bymin, bxmax, bymax))) for shapeid, shapedict in shapes: roadslist.append(shapedict) f.close() except: print('Not able to plot roads') roadslist = None val = 1 for k, layer in enumerate(plotorder): layergrid = newgrids[layer]['grid'] if 'label' in list(grids[layer].keys()): label1 = grids[layer]['label'] else: label1 = layer try: sref = grids[layer]['description']['name'] except: sref = None ax = fig.add_subplot(rowpan, colpan, val) val += 1 clat = bymin + (bymax-bymin)/2.0 clon = bxmin + (bxmax-bxmin)/2.0 # setup of basemap ('lcc' = lambert conformal conic). # use major and minor sphere radii from WGS84 ellipsoid. m = Basemap(llcrnrlon=bxmin, llcrnrlat=bymin, urcrnrlon=bxmax, urcrnrlat=bymax, rsphere=(6378137.00, 6356752.3142), resolution='l', area_thresh=1000., projection='lcc', lat_1=clat, lon_0=clon, ax=ax) x1, y1 = m(llons1, llats1) # get projection coordinates axsize = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) if k == 0: wid, ht = axsize.width, axsize.height if colormaps is not None and \ len(colormaps) == len(newgrids) and \ colormaps[k] is not None: palette = colormaps[k] else: # Find preferred default color map for each type of layer if 'prob' in layer.lower() or 'pga' in layer.lower() or \ 'pgv' in layer.lower() or 'cohesion' in layer.lower() or \ 'friction' in layer.lower() or 'fs' in layer.lower(): palette = cm.jet elif 'slope' in layer.lower(): palette = cm.gnuplot2 elif 'precip' in layer.lower(): palette = cm2.s3pcpn else: palette = defaultcolormap if topodata is not None: if k == 0: ptopo = m.transform_scalar( np.flipud(topodata), lons+0.5*gdict.dx, lats[::-1]-0.5*gdict.dy, np.round(300.*wid), np.round(300.*ht), returnxy=False, checkbounds=False, order=1, masked=False) #use lightsource class to make our shaded topography ls = LightSource(azdeg=135, altdeg=45) ls1 = LightSource(azdeg=120, altdeg=45) ls2 = LightSource(azdeg=225, altdeg=45) intensity1 = ls1.hillshade(ptopo, fraction=0.25, vert_exag=1.) intensity2 = ls2.hillshade(ptopo, fraction=0.25, vert_exag=1.) intensity = intensity1*0.5 + intensity2*0.5 #hillshm_im = m.transform_scalar(np.flipud(hillshm), lons, lats[::-1], np.round(300.*wid), np.round(300.*ht), returnxy=False, checkbounds=False, order=0, masked=False) #m.imshow(hillshm_im, cmap='Greys', vmin=0., vmax=3., zorder=1, interpolation='none') # vmax = 3 to soften colors to light gray #m.pcolormesh(x1, y1, hillshm, cmap='Greys', linewidth=0., rasterized=True, vmin=0., vmax=3., edgecolors='none', zorder=1); # plt.draw() # Get the data dat = layergrid.getData().copy() # mask out anything below any specified thresholds # Might need to move this up to before downsampling...might give illusion of no hazard in places where there is some that just got averaged out if maskthreshes is not None and len(maskthreshes) == len(newgrids): if maskthreshes[k] is not None: dat[dat <= maskthreshes[k]] = float('NaN') dat = np.ma.array(dat, mask=np.isnan(dat)) if logscale is not False and len(logscale) == len(newgrids): if logscale[k] is True: dat = np.log10(dat) label1 = r'$log_{10}$(' + label1 + ')' if scaletype.lower() == 'binned': # Find order of range to know how to scale order = np.round(np.log(np.nanmax(dat) - np.nanmin(dat))) if order < 1.: scal = 10**-order else: scal = 1. if lims is None or len(lims) != len(newgrids): clev = (np.linspace(np.floor(scal*np.nanmin(dat)), np.ceil(scal*np.nanmax(dat)), 10))/scal else: if lims[k] is None: clev = (np.linspace(np.floor(scal*np.nanmin(dat)), np.ceil(scal*np.nanmax(dat)), 10))/scal else: clev = lims[k] # Adjust to colorbar levels dat[dat < clev[0]] = clev[0] for j, level in enumerate(clev[:-1]): dat[(dat >= clev[j]) & (dat < clev[j+1])] = clev[j] # So colorbar saturates at top dat[dat > clev[-1]] = clev[-1] #panelhandle = m.contourf(x1, y1, datm, clev, cmap=palette, linewidth=0., alpha=ALPHA, rasterized=True) vmin = clev[0] vmax = clev[-1] else: if lims is not None and len(lims) == len(newgrids): if lims[k] is None: vmin = np.nanmin(dat) vmax = np.nanmax(dat) else: vmin = lims[k][0] vmax = lims[k][-1] else: vmin = np.nanmin(dat) vmax = np.nanmax(dat) # Mask out cells overlying oceans or block with a shapefile if available if oceanfile is None: dat = maskoceans(llons1, llats1, dat, resolution='h', grid=1.25, inlands=True) else: #patches = [] if type(ocean) is PolygonSH: ocean = [ocean] for oc in ocean: patch = getProjectedPatch(oc, m, edgecolor="#006280", facecolor=watercolor, lw=0.5, zorder=4.) #x, y = m(oc.exterior.xy[0], oc.exterior.xy[1]) #xy = zip(x, y) #patch = Polygon(xy, facecolor=watercolor, edgecolor="#006280", lw=0.5, zorder=4.) ##patches.append(Polygon(xy, facecolor=watercolor, edgecolor=watercolor, zorder=500.)) ax.add_patch(patch) ##ax.add_collection(PatchCollection(patches)) if inventory_shapefile is not None: for in1 in inventory: if 'point' in str(type(in1)): x, y = in1.xy x = x[0] y = y[0] m.scatter(x, y, c='m', s=50, latlon=True, marker='^', zorder=100001) else: x, y = m(in1.exterior.xy[0], in1.exterior.xy[1]) xy = list(zip(x, y)) patch = Polygon(xy, facecolor='none', edgecolor='k', lw=0.5, zorder=10.) #patches.append(Polygon(xy, facecolor=watercolor, edgecolor=watercolor, zorder=500.)) ax.add_patch(patch) palette.set_bad(clear_color, alpha=0.0) # Plot it up dat_im = m.transform_scalar( np.flipud(dat), lons+0.5*gdict.dx, lats[::-1]-0.5*gdict.dy, np.round(300.*wid), np.round(300.*ht), returnxy=False, checkbounds=False, order=0, masked=True) if topodata is not None: # Drape over hillshade #turn data into an RGBA image cmap = palette #adjust data so scaled between vmin and vmax and between 0 and 1 dat1 = dat_im.copy() dat1[dat1 < vmin] = vmin dat1[dat1 > vmax] = vmax dat1 = (dat1 - vmin)/(vmax-vmin) rgba_img = cmap(dat1) maskvals = np.dstack((dat1.mask, dat1.mask, dat1.mask)) rgb = np.squeeze(rgba_img[:, :, 0:3]) rgb[maskvals] = 1. draped_hsv = ls.blend_hsv(rgb, np.expand_dims(intensity, 2)) m.imshow(draped_hsv, zorder=3., interpolation='none') # This is just a dummy layer that will be deleted to make the # colorbar look right panelhandle = m.imshow(dat_im, cmap=palette, zorder=0., vmin=vmin, vmax=vmax) else: panelhandle = m.imshow(dat_im, cmap=palette, zorder=3., vmin=vmin, vmax=vmax, interpolation='none') #panelhandle = m.pcolormesh(x1, y1, dat, linewidth=0., cmap=palette, vmin=vmin, vmax=vmax, alpha=ALPHA, rasterized=True, zorder=2.); #panelhandle.set_edgecolors('face') # add colorbar cbfmt = '%1.1f' if vmax is not None and vmin is not None: if (vmax - vmin) < 1.: cbfmt = '%1.2f' elif vmax > 5.: # (vmax - vmin) > len(clev): cbfmt = '%1.0f' #norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) if scaletype.lower() == 'binned': cbar = fig.colorbar(panelhandle, spacing='proportional', ticks=clev, boundaries=clev, fraction=0.036, pad=0.04, format=cbfmt, extend='both') #cbar1 = ColorbarBase(cbar.ax, cmap=palette, norm=norm, spacing='proportional', ticks=clev, boundaries=clev, fraction=0.036, pad=0.04, format=cbfmt, extend='both', extendfrac='auto') else: cbar = fig.colorbar(panelhandle, fraction=0.036, pad=0.04, extend='both', format=cbfmt) #cbar1 = ColorbarBase(cbar.ax, cmap=palette, norm=norm, fraction=0.036, pad=0.04, extend='both', extendfrac='auto', format=cbfmt) if topodata is not None: panelhandle.remove() cbar.set_label(label1, fontsize=10) cbar.ax.tick_params(labelsize=8) parallels = m.drawparallels(getMapLines(bymin, bymax, 3), labels=[1, 0, 0, 0], linewidth=0.5, labelstyle='+/-', fontsize=9, xoffset=-0.8, color='gray', zorder=100.) m.drawmeridians(getMapLines(bxmin, bxmax, 3), labels=[0, 0, 0, 1], linewidth=0.5, labelstyle='+/-', fontsize=9, color='gray', zorder=100.) for par in parallels: try: parallels[par][1][0].set_rotation(90) except: pass #draw roads on the map, if they were provided to us if maproads is True and roadslist is not None: try: for road in roadslist: try: xy = list(road['geometry']['coordinates']) roadx, roady = list(zip(*xy)) mapx, mapy = m(roadx, roady) m.plot(mapx, mapy, roadcolor, lw=0.5, zorder=9) except: continue except Exception as e: print(('Failed to plot roads, %s' % e)) #add city names to map if mapcities is True and cityfile is not None: try: fontname = 'Arial' fontsize = 8 if k == 0: # Only need to choose cities first time and then apply to rest fcities = bcities.limitByMapCollision( m, fontname=fontname, fontsize=fontsize) ctlats, ctlons, names = fcities.getCities() cxis, cyis = m(ctlons, ctlats) for ctlat, ctlon, cxi, cyi, name in zip(ctlats, ctlons, cxis, cyis, names): m.scatter(ctlon, ctlat, c='k', latlon=True, marker='.', zorder=100000) ax.text(cxi, cyi, name, fontname=fontname, fontsize=fontsize, zorder=100000) except Exception as e: print('Failed to plot cities, %s' % e) #draw star at epicenter plt.sca(ax) if edict is not None: elat, elon = edict['lat'], edict['lon'] ex, ey = m(elon, elat) plt.plot(ex, ey, '*', markeredgecolor='k', mfc='None', mew=1.0, ms=15, zorder=10000.) m.drawmapboundary(fill_color=watercolor) m.fillcontinents(color=clear_color, lake_color=watercolor) m.drawrivers(color=watercolor) ##m.drawcoastlines() #draw country boundaries m.drawcountries(color=countrycolor, linewidth=1.0) #add map scale m.drawmapscale((bxmax+bxmin)/2., (bymin+(bymax-bymin)/9.), clon, clat, np.round((((bxmax-bxmin)*111)/5)/10.)*10, barstyle='fancy', zorder=10) # Add border autoAxis = ax.axis() rec = Rectangle((autoAxis[0]-0.7, autoAxis[2]-0.2), (autoAxis[1]-autoAxis[0])+1, (autoAxis[3]-autoAxis[2])+0.4, fill=False, lw=1, zorder=1e8) rec = ax.add_patch(rec) rec.set_clip_on(False) plt.draw() if sref is not None: label2 = '%s\nsource: %s' % (label1, sref) # '%s\n' % label1 + r'{\fontsize{10pt}{3em}\selectfont{}%s}' % sref # else: label2 = label1 plt.title(label2, axes=ax, fontsize=fontsizesub) #draw scenario watermark, if scenario if isScenario: plt.sca(ax) cx, cy = m(clon, clat) plt.text(cx, cy, 'SCENARIO', rotation=45, alpha=0.10, size=72, ha='center', va='center', color='red') #if ds: # Could add this to print "downsampled" on map # plt.text() if k == 1 and rowpan == 1: # adjust single level plot axsize = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) ht2 = axsize.height fig.set_figheight(ht2*1.6) else: plt.tight_layout() # Make room for suptitle - tight layout doesn't account for it plt.subplots_adjust(top=0.92) if printparam is True: try: fig = plt.gcf() dictionary = grids['model']['description']['parameters'] paramstring = 'Model parameters: ' halfway = np.ceil(len(dictionary)/2.) for i, key in enumerate(dictionary): if i == halfway and colpan == 1: paramstring += '\n' paramstring += ('%s = %s; ' % (key, dictionary[key])) print(paramstring) fig.text(0.01, 0.015, paramstring, fontsize=fontsizesmallest) plt.draw() except: print('Could not display model parameters') if edict is not None: eventid = edict['eventid'] else: eventid = '' time1 = datetime.datetime.utcnow().strftime('%d%b%Y_%H%M') outfile = os.path.join(outfolder, '%s_%s_%s.pdf' % (eventid, suptitle, time1)) pngfile = os.path.join(outfolder, '%s_%s_%s.png' % (eventid, suptitle, time1)) if savepdf is True: print('Saving map output to %s' % outfile) plt.savefig(outfile, dpi=300) if savepng is True: print('Saving map output to %s' % pngfile) plt.savefig(pngfile) if showplots is True: plt.show() else: plt.close(fig) return newgrids
def test(): cityfile = os.path.join(homedir,'data','cities1000.txt') print('Test loading geonames cities file from the web...') cities = BasemapCities.loadFromGeoNames(cityfile=cityfile) #load from the web print('Passed loading geonames cities file from the web.') print('Test limiting cities using California bounds...') ymin,ymax = 32.394, 42.062 xmin,xmax = -125.032, -114.002 bcities = cities.limitByBounds((xmin,xmax,ymin,ymax)) print('Done limiting cities using California bounds.') print('Test removing cities with collisions...') ymin,ymax = 32.394, 42.062 xmin,xmax = -125.032, -114.002 clat = (ymin+ymax)/2.0 clon = (xmin+xmax)/2.0 f = plt.figure(figsize=(8,8)) ax = f.add_axes([0.1,0.1,0.8,0.8]) BASEMAP_RESOLUTION = 'l' m = Basemap(llcrnrlon=xmin,llcrnrlat=ymin,urcrnrlon=xmax,urcrnrlat=ymax, rsphere=(6378137.00,6356752.3142), resolution=BASEMAP_RESOLUTION,projection='merc', lat_0=clat,lon_0=clon,lat_ts=clat,ax=ax) m.drawcoastlines() #have to draw something on map before axis limits are set... bigcities = bcities.limitByPopulation(500000) mapcities = bigcities.limitByMapCollision(m) mapcities.renderToMap(ax) df = mapcities.getDataFrame() boxes = [] for index,row in df.iterrows(): left = row['left'] right = row['right'] left = row['bottom'] right = row['top'] for box in boxes: bleft,bright,bbottom,btop = box #http://gamedevelopment.tutsplus.com/tutorials/collision-detection-using-the-separating-axis-theorem--gamedev-169 width = left - bleft hw_box1 = (right-left)*0.5 hw_box2 = (right-left)*0.5 hgap = length - hw_box1 - hw_box2 height = top - btop hh_box1 = (top-bottom)*0.5 hh_box2 = (btop-bbottom)*0.5 vgap = height - hh_box1 - hh_box2 assert hgap > 0 and vgap > 0 print('Passed test of city collisions...') print('Test all supported font names...') f = plt.figure() ax = f.add_axes([0.1,0.1,0.8,0.8]) plt.plot(1,1) for name in mapcities.getFontList(): plt.text(1,1,name,fontname=name) for name in mapcities.SUGGESTED_FONTS: plt.text(1,1,name,fontname=name) print('Passed test of supported font names.')
def parseMapConfig(config, fileext=None): """ Parse config for mapping options. Args: config (ConfigObj): ConfigObj object. fileext (str): File extension to add to relative filepaths, will be prepended to any file paths in config. Returns: dict: Dictionary of map options pulled from config file. """ topofile = None roadfolder = None cityfile = None roadcolor = '6E6E6E' countrycolor = '177F10' watercolor = 'B8EEFF' ALPHA = 0.7 oceanfile = None #oceanref = None #roadref = None #cityref = None if fileext is None: fileext = '.' if 'dem' in config: topofile = os.path.join(fileext, config['dem']['file']) if os.path.exists(topofile) is False: print('DEM not valid - hillshade will not be possible\n') if 'ocean' in config: oceanfile = os.path.join(fileext, config['ocean']['file']) #try: # oceanref = config['ocean']['shortref'] #except: # oceanref = 'unknown' if 'roads' in config: roadfolder = os.path.join(fileext, config['roads']['file']) if os.path.exists(roadfolder) is False: print('roadfolder not valid - roads will not be displayed\n') roadfolder = None #try: # roadref = config['roads']['shortref'] #except: # roadref = 'unknown' if 'cities' in config: cityfile = os.path.join(fileext, config['cities']['file']) #try: # cityref = config['cities']['shortref'] #except: # cityref = 'unknown' if os.path.exists(cityfile): try: BasemapCities.loadFromGeoNames(cityfile=cityfile) except Exception as e: print(e) print('cities file not valid - cities will not be displayed\n') cityfile = None else: print('cities file not valid - cities will not be displayed\n') cityfile = None if 'roadcolor' in config['colors']: roadcolor = config['colors']['roadcolor'] if 'countrycolor' in config['colors']: countrycolor = config['colors']['countrycolor'] if 'watercolor' in config['colors']: watercolor = config['colors']['watercolor'] if 'alpha' in config['colors']: ALPHA = float(config['colors']['alpha']) countrycolor = '#'+countrycolor watercolor = '#'+watercolor roadcolor = '#'+roadcolor mapin = {'topofile': topofile, 'roadfolder': roadfolder, 'cityfile': cityfile, 'roadcolor': roadcolor, 'countrycolor': countrycolor, 'watercolor': watercolor, 'ALPHA': ALPHA, 'oceanfile': oceanfile} # 'roadref': roadref, 'cityref': cityref, 'oceanref': oceanref return mapin
def __init__(self, container, topofile, layerdict, cities_file, logger): """Initialize MapMaker object. Args: container (ShakeMapOutputContainer): ShakeMapOutputContainer object containing model results. topofile (str): Path to file containing global topography grid. layerdict (dict): Dictionary containing fields: - coast: Global coastline shapefile. - ocean: Global ocean shapefile. - lake: Global lakes shapefile. - country: Global country boundaries shapefile. - state: Global state (or equivalent) boundaries shapefile. - roads: Global roads directory containing directories with regional shapefiles. cities_file (str): Path to geonames cities1000.txt file. logger (Logger): Python logging instance. Raises: KeyError: When any of layerdict keys are missing. """ req_keys = set(['coast', 'ocean', 'lake', 'country', 'state']) if len(set(layerdict.keys()).intersection(req_keys)) != len(req_keys): raise KeyError( 'layerdict input must have all keys from %s' % str(req_keys)) self.container = container self.topofile = topofile self.layerdict = layerdict cities = BasemapCities.loadFromGeoNames(cities_file) self.cities = cities self.city_cols = CITY_COLS self.city_rows = CITY_ROWS self.cities_per_grid = CITIES_PER_GRID self.intensity_colormap = ColorPalette.fromPreset('mmi') self.contour_colormap = ColorPalette.fromPreset('shaketopo') station_dict = container.getStationDict() self.stations = station_dict rupture_dict = container.getRuptureDict() info_dict = json.loads( container.getString('info.json'))['input']['event_information'] event_dict = { 'eventsourcecode': info_dict['event_id'], 'lat': float(info_dict['latitude']), 'lon': float(info_dict['longitude']), 'depth': float(info_dict['depth']), 'mag': float(info_dict['magnitude']) } origin = Origin(event_dict) if rupture_dict['features'][0]['geometry']['type'] == 'Point': rupture = PointRupture(origin) else: rupture = rupture_from_dict_and_origin(rupture_dict, origin) self.fault = rupture self.fig_width = FIG_WIDTH self.fig_height = FIG_HEIGHT self.logger = logger # clip all the vector data now so that map rendering will be fast t1 = time.time() self._clipBounds() t2 = time.time() self.logger.debug('%.1f seconds to clip vectors.' % (t2 - t1))