예제 #1
1
	def __call__(self,iteration):
		
		p = self.t.calcPress(iteration,pOnly=True)

		plt.imshow(p[:,0,:],origin=0)
		plt.axis('tight')
		plt.colorbar()
def plotmaptime():
    pcolormesh(yoko, time*1e6, absolute(Magcom))
    title("Reflection vs flux \n and time (1 us pulse) at 4.46 GHz")
    xlabel("Flux (V)")
    ylabel("Time (us)")
    #ylim(0, 1.5)
    colorbar()
예제 #3
0
def plots(i,tcodnt, temp, forecast,added_tcodnt,n_steps,path, rsdlsc,rsdlpctgc, sqrpctgc,a,b,c,d,e):
    fig=mp.figure(figsize=[15,6])#5:2,89mm
    grid=mp.GridSpec(3,36,wspace=1,hspace=0.4)
    ax=mp.subplot(grid[:2,:18])
    cpplot(i,tcodnt, temp, forecast,added_tcodnt,n_steps,path)
    #rscplot(i,tcodnt, rsdlsc, rsdlpctgc, sqrpctgc,path)
    ax=mp.subplot(grid[2,:18])
    im1=colorbar(ax,tcodnt, rsdlsc,i,0,-1,c**2)
    ax.set_yticks([])
    ax=mp.subplot(grid[2,21:35])
    im2=colorbar(ax,tcodnt, rsdlsc,i,a,b,int(c/2))
    ax.set_yticks([])
    ax=mp.subplot(grid[:2,21:35])
    partial_plot_for_ahead_interval(i,tcodnt, temp, forecast,added_tcodnt,n_steps,path,rsdlpctgc,a,b)
    ax1=mp.subplot(grid[:,35])
    clb1=mp.colorbar(im2,cax=ax1,extend='both')
    #clb1.set_label('residuals',fontsize=12,color='grey')
    ax2=mp.subplot(grid[:,18])
    clb2=mp.colorbar(im1,cax=ax2,extend='both')
    clb1.set_label('residuals',fontsize=size)
#    ax=mp.subplot(grid[:2,32:35])
#    partial_plot_for_ahead_interval(i,tcodnt, temp, forecast,added_tcodnt,n_steps,path,rsdlpctgc,d,e)
#    ax=mp.subplot(grid[2,32:35])
#    im3=colorbar(ax,tcodnt, rsdlsc,i,d,e,int(c/5))
#    ax.set_yticks([])
#    ax3=mp.subplot(grid[:,35])
#    clb3=mp.colorbar(im3,cax=ax3,extend='both')
#    clb3.set_label('residuals',fontsize=size,color='grey')
    mp.savefig((str(path)+'\\'+'results'+'\\'+'Accuracy_Graph_%d'+'.jpg')%i,format='jpg',dpi=2000)
예제 #4
0
파일: gridworld.py 프로젝트: PRMLiA/tsho
def main():
    gw = gridworld()
    a = agent(gw)

    for epoch in range(20):
        a.initEpoch()
        while True:
            rwd, stat, act = a.takeAction()
            a.updateQ(rwd, stat, act)
            if gw.status() == 'Goal':
                break
            if mod(a.counter, 10)==0:
                print(gw.state())
                print(gw.field())
        print('Finished')
        print(a.counter)
        print(gw.state())
        print(gw.field())
        Q = transpose(a.Q(), (2,0,1))
        for i in range(4):
            plt.subplot(2,2,i)
            plt.imshow(Q[i], interpolation='nearest')
            plt.title(a.actions()[i])
            plt.colorbar()
        plt.show()
def plotmapdBtime():
    pcolormesh(yoko, time*1e6, dB(S11c), vmin=-65, vmax=-30)
    title("Reflection (dB) vs flux \n and time (1 us pulse) at 4.46 GHz")
    xlabel("Flux (V)")
    ylabel("Time (us)")
    #ylim(0, 1.5)
    colorbar()
예제 #6
0
def test_minimized_rasterized():
    # This ensures that the rasterized content in the colorbars is
    # only as thick as the colorbar, and doesn't extend to other parts
    # of the image.  See #5814.  While the original bug exists only
    # in Postscript, the best way to detect it is to generate SVG
    # and then parse the output to make sure the two colorbar images
    # are the same size.
    from xml.etree import ElementTree

    np.random.seed(0)
    data = np.random.rand(10, 10)

    fig, ax = plt.subplots(1, 2)
    p1 = ax[0].pcolormesh(data)
    p2 = ax[1].pcolormesh(data)

    plt.colorbar(p1, ax=ax[0])
    plt.colorbar(p2, ax=ax[1])

    buff = io.BytesIO()
    plt.savefig(buff, format='svg')

    buff = io.BytesIO(buff.getvalue())
    tree = ElementTree.parse(buff)
    width = None
    for image in tree.iter('image'):
        if width is None:
            width = image['width']
        else:
            if image['width'] != width:
                assert False
예제 #7
0
    def atest_interpolation_coast(self):
        """Test interpolation."""
        reader = reader_ROMS_native.Reader('/disk2/data/SVIM/ocean_avg_20081201.nc')
        num_points = 50
        np.random.seed(0)  # To get the same random numbers each time
        lons = np.random.uniform(12, 16, num_points)
        lats = np.random.uniform(68.3, 68.3, num_points)
        z = np.random.uniform(-100, 0, num_points)
        x, y = reader.lonlat2xy(lons, lats)

        variables = ['x_sea_water_velocity', 'y_sea_water_velocity',
                     'sea_water_temperature']
        # Read a block of data covering the points
        data = reader.get_variables(variables, time=reader.start_time,
                                    x=x, y=y, z=z, block=True)
        import matplotlib.pyplot as plt
        plt.imshow(data['x_sea_water_velocity'][0,:,:])
        plt.colorbar()
        plt.show()

        b = ReaderBlock(data, interpolation_horizontal='nearest')

        env, prof = b.interpolate(x, y, z, variables,
                                  profiles=['x_sea_water_velocity'],
                                  profiles_depth=[-30, 0])
예제 #8
0
파일: matplotlib.py 프로젝트: Ocode/nengo
def implot(plt, x, y, Z, ax=None, colorbar=True, **kwargs):
    """Image plot of general data (like imshow but with non-pixel axes).

    Parameters
    ----------
    plt : plot object
        Plot object, typically `matplotlib.pyplot`.
    x : (M,) array_like
        Vector of x-axis points, must be linear (equally spaced).
    y : (N,) array_like
        Vector of y-axis points, must be linear (equally spaced).
    Z : (M, N) array_like
        Matrix of data to be displayed, the value at each (x, y) point.
    ax : axis object (optional)
        A specific axis to plot on (defaults to `plt.gca()`).
    colorbar: boolean (optional)
        Whether to plot a colorbar.
    **kwargs
        Additional arguments for `ax.imshow`.
    """
    ax = plt.gca() if ax is None else ax

    def is_linear(x):
        diff = np.diff(x)
        return np.allclose(diff, diff[0])

    assert is_linear(x) and is_linear(y)
    image = ax.imshow(Z, aspect='auto', extent=(x[0], x[-1], y[-1], y[0]),
                      **kwargs)
    if colorbar:
        plt.colorbar(image, ax=ax)
예제 #9
0
def _plot_loading(loadings, idx, axes_manager, ax=None,
                  comp_label='PC', no_nans=True, calibrate=True,
                  cmap=plt.cm.gray):
    if ax is None:
        ax = plt.gca()
    if no_nans:
        loadings = np.nan_to_num(loadings)
    if axes_manager.navigation_dimension == 2:
        extent = None
        # get calibration from a passed axes_manager
        shape = axes_manager._navigation_shape_in_array
        if calibrate:
            extent = (axes_manager._axes[0].low_value,
                      axes_manager._axes[0].high_value,
                      axes_manager._axes[1].high_value,
                      axes_manager._axes[1].low_value)
        im = ax.imshow(loadings[idx].reshape(shape), cmap=cmap, extent=extent,
                       interpolation='nearest')
        div = make_axes_locatable(ax)
        cax = div.append_axes("right", size="5%", pad=0.05)
        plt.colorbar(im, cax=cax)
    elif axes_manager.navigation_dimension == 1:
        if calibrate:
            x = axes_manager._axes[0].axis
        else:
            x = np.arange(axes_manager._axes[0].size)
        ax.step(x, loadings[idx])
    else:
        messages.warning_exit('View not supported')
예제 #10
0
파일: plotter.py 프로젝트: komahanb/pchaos
def plot_jacobian(A, name, cmap= plt.cm.coolwarm, normalize=True, precision=1e-6):

    """
    Customized visualization of jacobian matrices for observing
    sparsity patterns
    """
    
    plt.figure()
    fig, ax = plt.subplots()
    
    if normalize is True:
        plt.imshow(A, interpolation='none', cmap=cmap,
                   norm = mpl.colors.Normalize(vmin=-1.,vmax=1.))
    else:
        plt.imshow(A, interpolation='none', cmap=cmap)        
    plt.colorbar(format=ticker.FuncFormatter(fmt))
    
    ax.spy(A, marker='.', markersize=0,  precision=precision)
    
    ax.spines['right'].set_visible(True)
    ax.spines['bottom'].set_visible(True)
    ax.xaxis.set_ticks_position('top')
    ax.yaxis.set_ticks_position('left')

    xlabels = np.linspace(0, A.shape[0], 5, True, dtype=int)
    ylabels = np.linspace(0, A.shape[1], 5, True, dtype=int)

    plt.xticks(xlabels)
    plt.yticks(ylabels)

    plt.savefig(name, bbox_inches='tight', pad_inches=0.05)
    
    plt.close()

    return
예제 #11
0
def pltytfield():
    fig=plt.figure()
    ppy=yt.ProjectionPlot(ds, "x", "Bxy", weight_field="density") #Project X-component of B-field from z-direction
    By=ppy._frb["Bxy"]
    ax=fig.add_subplot(111)
    plt.xticks(tick_locs,tick_lbls)
    plt.yticks(tick_locs,tick_lbls)
    Bymag=ax.pcolormesh(np.log10(By))
    cbar_m=plt.colorbar(Bymag)
    cbar_m.set_label("Bxy")
    plt.title("Bxy in yz plane")

    fig=plt.figure()
    ppy=yt.ProjectionPlot(ds, "y", "Bxy", weight_field="density") #Project X-component of B-field from z-direction
    By=ppy._frb["Bxy"]
    ax=fig.add_subplot(111)
    plt.xticks(tick_locs,tick_lbls)
    plt.yticks(tick_locs,tick_lbls)
    Bymag=ax.pcolormesh(np.log10(By))
    cbar_m=plt.colorbar(Bymag)
    cbar_m.set_label("Bxy")
    plt.title("Bxy in xz plane")

    fig=plt.figure()
    ppy=yt.ProjectionPlot(ds, "z", "Bxy", weight_field="density") #Project X-component of B-field from z-direction
    By=ppy._frb["Bxy"]
    ax=fig.add_subplot(111)
    plt.xticks(tick_locs,tick_lbls)
    plt.yticks(tick_locs,tick_lbls)
    Bymag=ax.pcolormesh(np.log10(By))
    cbar_m=plt.colorbar(Bymag)
    cbar_m.set_label("Bxy")
    plt.title("Bxy in xy plane")
def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    """
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    """
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)

    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')

    print(cm)

    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, cm[i, j],
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
예제 #13
0
def run(meth = 'moment'):
    out,srts = bs.run0(arr = arr, itr = 2, meth = meth)
    f = myplots.fignum(3,(12,6))
    ax = f.add_subplot(111)

    csrts = [s for s in srts if len(s) == len(cols)][0]
    rsrts = [s for s in srts if len(s) == len(rows)][0]
    cprint = [rows[rs] for rs in rsrts]
    rprint = [cols[cs] for cs in csrts]


    im = ax.imshow(out,
              interpolation= 'nearest',
              cmap = plt.get_cmap('OrRd'),
              )

        #flip the rows and columns... looks better.   
    ax.set_xticks(arange(len(cols))+.25)
    ax.set_yticks(arange(len(rows))+.25)

    ax.set_yticklabels([e for  e in cprint])
    ax.set_xticklabels(rprint)

    print 'rows: \n{0}'.format(', '.join([e.strip() for e in rprint]))
    print
    print 'cols: \n{0}'.format(', '.join([e.strip() for e in cprint]))

    plt.colorbar(im)
    
    f.savefig(myplots.figpath('correlation_plot_2_4_{0}.pdf')
              .format(meth))
    return
예제 #14
0
def streamlineBxz_dens():
    fig=plt.figure()
    ppy=yt.ProjectionPlot(ds, "y", "Bxz", weight_field="density") #Project X-component of B-field from z-direction
    By=ppy._frb["density"]
    ax=fig.add_subplot(111)
    plt.xticks(tick_locs,tick_lbls)
    plt.yticks(tick_locs,tick_lbls)
    Bymag=ax.pcolormesh(np.log10(By), cmap="YlGn")
    cbar_m=plt.colorbar(Bymag)
    cbar_m.set_label("density")
    res=800

    #densxy=Density2D(0,1) #integrated density along given axis
    U=Flattenx(0,1) #X-magnetic field integrated along given axis
    V=Flattenz(0,1) #Z-magnetic field
    #U=np.asarray(zip(*x2)[::-1]) #rotate the matrix 90 degrees to correct orientation to match projected plots
    #V=np.asarray(zip(*y2)[::-1])
    norm=np.sqrt(U**2+V**2) #magnitude of the vector
    Unorm=U/norm #normalise vectors 
    Vnorm=V/norm
    #mask_Unorm=np.ma.masked_where(densxy<np.mean(densxy),Unorm) #create a masked array of Unorm values only in high density regions
    #mask_Vnorm=np.ma.masked_where(densxy<np.mean(densxy),Vnorm)
    X,Y=np.meshgrid(np.linspace(0,res,64, endpoint=True),np.linspace(0,res,64,endpoint=True))
    streams=plt.streamplot(X,Y,Unorm,Vnorm,color=norm*1e6,density=(3,3),cmap=plt.cm.autumn)
    cbar=plt.colorbar(orientation="horizontal")
    cbar.set_label('Bxz streamlines (uG)')
    plt.title("Bxz streamlines on weighted density projection")
    plt.xlabel("(1e4 AU)")
    plt.ylabel("(1e4 AU)")
예제 #15
0
def TuningResponseArea(tuningCurves, unitKey='', figPath=[]):
	""" Plot the tuning response area for tuning curve data.        
	:param tuningCurves: pandas.DataFrame from spreadsheet with experimental data loaded from Excel file
	:type tuningCurves: pandas.core.DataFrame
	:param unitKey: identifying string for data, possibly unit name/number and test number 
	:type unitKey: str
	:param figPath: Directory location for plots to be saved
	:type figPath: str
	"""
	f = plt.figure()
	colorRange = (-10,10.1)
	I = np.unique(np.array(tuningCurves['intensity']))
	F = np.array(tuningCurves['freq'])
	R = np.array(np.zeros((len(I), len(F))))
	for ci, i in enumerate(I):
		for cf, f in enumerate(F):
			R[ci,cf] = tuningCurves['response'].where(tuningCurves['intensity']==i).where(tuningCurves['freq']==f).dropna().values[0]
	levelRange = np.arange(colorRange[0], colorRange[1], (colorRange[1]-colorRange[0])/float(25*(colorRange[1]-colorRange[0]))) 
	sns.set_context(rc={"figure.figsize": (7, 4)})
	ax = plt.contourf(F, I, R)#, vmin=colorRange[0], vmax=colorRange[1], levels=levelRange, cmap = cm.bwr )
	plt.colorbar()
	# plt.title(unit, fontsize=14)
	plt.xlabel('Frequency (kHz)', fontsize=14)
	plt.ylabel('Intensity (dB)', fontsize=14)
	if len(figPath)>0: 
		plt.savefig(figPath + 'tuningArea_' + unitKey +'.png')
예제 #16
0
def plot_heat_net(net_mat, sectors):
    """Plot a heat map of the net relations.

    Parameters
    ----------
    net_mat: np.ndarray
        the net represented in a matrix way.
    sectors: list
        the name of the elements of the adjacency matrix network.

    Returns
    -------
    fig: matplotlib.pyplot.figure
        the figure of the matrix heatmap.

    """
    vmax = np.sort([np.abs(net_mat.max()), np.abs(net_mat.min())])[::-1][0]
    n_sectors = len(sectors)
    assert(net_mat.shape[0] == net_mat.shape[1])
    assert(n_sectors == len(net_mat))

    fig = plt.figure()
    plt.imshow(net_mat, interpolation='none', cmap=plt.cm.RdYlGn,
               vmin=-vmax, vmax=vmax)
    plt.xticks(range(n_sectors), sectors)
    plt.yticks(range(n_sectors), sectors)
    plt.xticks(rotation=90)
    plt.colorbar()
    return fig
예제 #17
0
파일: topo.py 프로젝트: leggitta/mne-python
def _imshow_tfr(ax, ch_idx, tmin, tmax, vmin, vmax, onselect, ylim=None,
                tfr=None, freq=None, vline=None, x_label=None, y_label=None,
                colorbar=False, picker=True, cmap='RdBu_r', title=None):
    """ Aux function to show time-freq map on topo """
    import matplotlib.pyplot as plt
    from matplotlib.widgets import RectangleSelector
    extent = (tmin, tmax, freq[0], freq[-1])
    img = ax.imshow(tfr[ch_idx], extent=extent, aspect="auto", origin="lower",
                    vmin=vmin, vmax=vmax, picker=picker, cmap=cmap)
    if isinstance(ax, plt.Axes):
        if x_label is not None:
            ax.set_xlabel(x_label)
        if y_label is not None:
            ax.set_ylabel(y_label)
    else:
        if x_label is not None:
            plt.xlabel(x_label)
        if y_label is not None:
            plt.ylabel(y_label)
    if colorbar:
        plt.colorbar(mappable=img)
    if title:
        plt.title(title)
    if not isinstance(ax, plt.Axes):
        ax = plt.gca()
    ax.RS = RectangleSelector(ax, onselect=onselect)  # reference must be kept
예제 #18
0
파일: topo.py 프로젝트: leggitta/mne-python
def _erfimage_imshow(ax, ch_idx, tmin, tmax, vmin, vmax, ylim=None,
                     data=None, epochs=None, sigma=None,
                     order=None, scalings=None, vline=None,
                     x_label=None, y_label=None, colorbar=False,
                     cmap='RdBu_r'):
    """Aux function to plot erfimage on sensor topography"""
    from scipy import ndimage
    import matplotlib.pyplot as plt
    this_data = data[:, ch_idx, :].copy()
    ch_type = channel_type(epochs.info, ch_idx)
    if ch_type not in scalings:
        raise KeyError('%s channel type not in scalings' % ch_type)
    this_data *= scalings[ch_type]

    if callable(order):
        order = order(epochs.times, this_data)

    if order is not None:
        this_data = this_data[order]

    if sigma > 0.:
        this_data = ndimage.gaussian_filter1d(this_data, sigma=sigma, axis=0)

    ax.imshow(this_data, extent=[tmin, tmax, 0, len(data)], aspect='auto',
              origin='lower', vmin=vmin, vmax=vmax, picker=True,
              cmap=cmap, interpolation='nearest')

    if x_label is not None:
        plt.xlabel(x_label)
    if y_label is not None:
        plt.ylabel(y_label)
    if colorbar:
        plt.colorbar()
예제 #19
0
파일: imshow.py 프로젝트: decvalts/landlab
def imshow_active_cells(grid, values, var_name=None, var_units=None,
                grid_units=(None, None), symmetric_cbar=False,
                cmap='pink'):
    """
    .. deprecated:: 0.6
    Use :meth:`imshow_active_cell_grid`, above, instead.
    """
    data = values.view()
    data.shape = (grid.shape[0]-2, grid.shape[1]-2)

    y = np.arange(data.shape[0]) - grid.dx * .5
    x = np.arange(data.shape[1]) - grid.dx * .5

    if symmetric_cbar:
        (var_min, var_max) = (data.min(), data.max())
        limit = max(abs(var_min), abs(var_max))
        limits = (-limit, limit)
    else:
        limits = (None, None)

    plt.pcolormesh(x, y, data, vmin=limits[0], vmax=limits[1], cmap=cmap)

    plt.gca().set_aspect(1.)
    plt.autoscale(tight=True)

    plt.colorbar()

    plt.xlabel('X (%s)' % grid_units[1])
    plt.ylabel('Y (%s)' % grid_units[0])

    if var_name is not None:
        plt.title('%s (%s)' % (var_name, var_units))

    plt.show()
예제 #20
0
def demo_locatable_axes_hard(fig1):

    from mpl_toolkits.axes_grid1 import SubplotDivider, LocatableAxes, Size

    divider = SubplotDivider(fig1, 2, 2, 2, aspect=True)

    # axes for image
    ax = LocatableAxes(fig1, divider.get_position())

    # axes for colorbar
    ax_cb = LocatableAxes(fig1, divider.get_position())

    h = [Size.AxesX(ax), Size.Fixed(0.05), Size.Fixed(0.2)]  # main axes  # padding, 0.1 inch  # colorbar, 0.3 inch

    v = [Size.AxesY(ax)]

    divider.set_horizontal(h)
    divider.set_vertical(v)

    ax.set_axes_locator(divider.new_locator(nx=0, ny=0))
    ax_cb.set_axes_locator(divider.new_locator(nx=2, ny=0))

    fig1.add_axes(ax)
    fig1.add_axes(ax_cb)

    ax_cb.axis["left"].toggle(all=False)
    ax_cb.axis["right"].toggle(ticks=True)

    Z, extent = get_demo_image()

    im = ax.imshow(Z, extent=extent, interpolation="nearest")
    plt.colorbar(im, cax=ax_cb)
    plt.setp(ax_cb.get_yticklabels(), visible=False)
예제 #21
0
파일: figures.py 프로젝트: trungnt13/blocks
def plot_confusion_matrix(cm, labels, axis=None, fontsize=13, colorbar=False):
    from matplotlib import pyplot as plt

    title = 'Confusion matrix'
    cmap = plt.cm.Blues

    # column normalize
    if np.max(cm) > 1:
        cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
    else:
        cm_normalized = cm
    if axis is None:
        axis = plt.gca()

    im = axis.imshow(cm_normalized, interpolation='nearest', cmap=cmap)
    axis.set_title(title)
    # axis.get_figure().colorbar(im)

    tick_marks = np.arange(len(labels))
    axis.set_xticks(tick_marks)
    axis.set_yticks(tick_marks)
    axis.set_xticklabels(labels, rotation=90, fontsize=fontsize)
    axis.set_yticklabels(labels, fontsize=fontsize)
    axis.set_ylabel('True label')
    axis.set_xlabel('Predicted label')

    if colorbar == 'all':
        fig = axis.get_figure()
        axes = fig.get_axes()
        fig.colorbar(im, ax=axes)
    elif colorbar:
        plt.colorbar(im, ax=axis)

    # axis.tight_layout()
    return axis
예제 #22
0
def el_plot(data, Map=False, show=True):
    """
    Plot the elevation for the region from the last time series
    
    :Parameters:
        **data** -- the standard python data dictionary
        
        **Map** -- {True, False} (optional): Optional argument.  If True,
            the elevation will be plotted on a map.  
    """
    trigrid = data['trigrid']
    plt.gca().set_aspect('equal')
    plt.tripcolor(trigrid, data['zeta'][-1,:])
    plt.colorbar()
    plt.title("Elevation")
    if Map:
        #we set the corners of where the map should show up
        llcrnrlon, urcrnrlon = plt.xlim()
        llcrnrlat, urcrnrlat = plt.ylim()
        #we construct the map.  Note that resolution serves to increase
        #or decrease the detail in the coastline.  Currently set to 
        #'i' for 'intermediate'
        m = Basemap(llcrnrlon, llcrnrlat, urcrnrlon, urcrnrlat, \
            resolution='i', suppress_ticks=False)
        #set color for continents.  Default is grey.
        m.fillcontinents(color='ForestGreen')
        m.drawmapboundary()
        m.drawcoastlines()
    if show:
        plt.show()
예제 #23
0
파일: chart.py 프로젝트: lmcintosh/jetpack
def corrplot(C, cmap=None, cmap_range=(0.,1.), cbar=True, fontsize=14, **kwargs):
    """
    Plots values in a correlation matrix

    """

    ax = kwargs['ax']
    n = len(C)

    # defaults
    if cmap is None:
        if min(cmap_range) >= 0:
            cmap = "OrRd"
        elif max(cmap_range) <= 0:
            cmap = "RdBu"
        else:
            cmap = "gray"

    # remove values
    rr, cc = np.triu_indices(n, k=1)
    C[rr, cc] = np.nan

    vmin, vmax = cmap_range
    img = ax.imshow(C, cmap=cmap, vmin=vmin, vmax=vmax, aspect='equal')

    if cbar:
        plt.colorbar(img) #, shrink=0.75)

    for j in range(n):
        for i in range(j+1,n):
            ax.text(i, j, '{:0.2f}'.format(C[i,j]), fontsize=fontsize,
                    fontdict={'ha': 'center', 'va': 'center'})

    noticks(ax=ax)
예제 #24
0
def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=None,
                          zmin=1):
    """This function prints and plots the confusion matrix for the intent classification.

    Normalization can be applied by setting `normalize=True`."""
    import numpy as np

    zmax = cm.max()
    plt.imshow(cm, interpolation='nearest', cmap=cmap if cmap else plt.cm.Blues, aspect='auto',
               norm=LogNorm(vmin=zmin, vmax=zmax))
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=90)
    plt.yticks(tick_marks, classes)

    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        logger.info("Normalized confusion matrix: \n{}".format(cm))
    else:
        logger.info("Confusion matrix, without normalization: \n{}".format(cm))

    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, cm[i, j],
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.ylabel('True label')
    plt.xlabel('Predicted label')
예제 #25
0
	def __call__(self,u,w,bx,by,bz,b2,t):
		q = 8

		map = cm.red_blue()
		if self.x == None:
			nx = u.shape[2]
			nz = u.shape[0]
			self.x,self.y = np.meshgrid(range(nx),range(nz))
		x,y = self.x,self.y

		avgu = np.average(u,1)
		avgw = np.average(w,1)
		avgbx = np.average(bx,1)
		avgby = np.average(by,1)
		avgbz = np.average(bz,1)
		avgb2 = np.average(b2,1)
		avgt = np.average(t,1)

		plt.subplot(121)
		plt.imshow(avgt,cmap=map,origin='lower')
		plt.colorbar()
		plt.quiver(x[::q,::q],y[::q,::q],avgu[::q,::q],avgw[::q,::q])
		plt.title('Tracer-Vel')
		plt.axis("tight")

		plt.subplot(122)
		plt.imshow(avgby,cmap=map,origin='lower')
		plt.colorbar()
		plt.quiver(x[::q,::q],y[::q,::q],avgbx[::q,::q],avgbz[::q,::q])
		plt.title('By-Twist')
		plt.axis("tight")
예제 #26
0
def get_heatmap(data_mat, name_for_saving_files,  pp,stimulus_on_time, stimulus_off_time,delta_ff, f0_start, f0_end):
    
    #Plot heatmap for validation 
    A1 = np.reshape(data_mat, (np.size(data_mat,0)*np.size(data_mat,1), np.size(data_mat,2)))
    if delta_ff == 1:
        delta_ff_A1 = np.zeros(np.shape(A1))
        for ii in xrange(0,np.size(A1,0)):
            delta_ff_A1[ii,:] = (A1[ii,:]-np.mean(A1[ii,f0_start:f0_end]))/(np.std(A1[ii,f0_start:f0_end])+0.1)
        B = np.argsort(np.mean(delta_ff_A1, axis=1))  
        print np.max(delta_ff_A1)
    else:
        B = np.argsort(np.mean(A1, axis=1)) 
        print np.max(A1)

    with sns.axes_style("white"):
        C = A1[B,:][-2000:,:]

        fig2 = plt.imshow(C,aspect='auto', cmap='jet', vmin = np.min(C), vmax = np.max(C))
        
        plot_vertical_lines_onset(stimulus_on_time)
        plot_vertical_lines_offset(stimulus_off_time)
        plt.title(name_for_saving_files)
        plt.colorbar()
        fig2 = plt.gcf()
        pp.savefig(fig2)
        plt.close()
def plot_map(AX, fname, mmin=0,mmax=1, annot='A', xoff=False,yoff=False, xlab='None', ylab='None', aspect=False, row_lab=None, col_lab=None, log=False):

	global xtix, ytix, xtix_loc, ytix_loc, fsa, fs

	mmap = np.genfromtxt(fname, delimiter=',')
	if log:
		mmap = np.log(mmap)
	im = AX.pcolor(mmap, vmin=mmin, vmax=mmax)
	plt.colorbar(im, ax=AX)
	AX.annotate(annot, (0,0), (0.02,0.9), color='white', fontsize= fsa, fontweight='bold', xycoords='data', textcoords='axes fraction')
	if row_lab != None:
		AX.annotate(row_lab, xy=(0.0, 0.5), size='x-large', ha='right', va='center', xytext= (-4.5, 5))#(-ax.yaxis.labelpad - pad, 0),xycoords=ax.yaxis.label, textcoords='offset points'
	if col_lab != None:
		AX.set_title(col_lab)

	AX.set_xticks(xtix_loc)
	AX.set_yticks(ytix_loc)
	if xoff:
		AX.set_xticklabels('')
	else:
		AX.set_xticklabels(xtix)
	if yoff:
		AX.set_yticklabels('')
	else:
		AX.set_yticklabels(ytix)

	if xlab != 'None':
		AX.set_xlabel(xlab, fontsize = fs)
	if ylab != 'None':
		AX.set_ylabel(ylab, fontsize = fs)

	if aspect:
		AX.set_aspect('equal', 'datalim')
예제 #28
0
def lasso_regression(features, solutions, verbose=0):
    columns = solutions.columns

    clf = Lasso(alpha=1e-4, max_iter=5000)

    print('Training Model... ')
    clf.fit(features, solutions)
    
    feature_coeff = clf.coef_
    features_importances = np.zeros((169, 3))
    for idx in range(3):
        features_importance = np.reshape(feature_coeff[idx, :], (169, 8))
        features_importance = np.max(features_importance, axis=1)
        features_importances[:, idx] = features_importance
        
    features_importance_max = np.max(features_importances, axis=1)
    features_importance_max = np.reshape(features_importance_max, (13, 13))
    plt.pcolor(features_importance_max)
    plt.title("Feature importance for HoG")
    plt.colorbar()
    plt.xticks(arange(0.5,13.5), range(1, 14))
    plt.yticks(arange(0.5,13.5), range(1, 14))
    plt.axis([0, 13, 0, 13])
    plt.show()
    
    print('Done Training')
    return (clf, columns)
예제 #29
0
def plotTimeseries(mytimes,myyears,times,mydata,myvar,depthlevels,mytype):
    
    depthlevels=-np.asarray(depthlevels)
    ax = figure().add_subplot(111)
    
    y,x = np.meshgrid(depthlevels,times)
    
    mydata=np.rot90(mydata)
    if myvar=='temp':
        levels = np.arange(-2,16,1)
    if myvar=='salt':
        levels = np.arange(mydata.min(),mydata.max()+0.1,0.05)
    if mytype=="T-CLASS3-IC_CHANGE":
             levels = np.arange(mydata.min(),mydata.max()+0.1,0.1)
    if mytype=="S-CLASS3-IC_CHANGE":
             levels = np.arange(mydata.min(),mydata.max()+0.1,0.05)
             
    print mydata.min(), mydata.max()
    cs=contourf(x,y,mydata,levels,cmap=cm.get_cmap('RdBu_r',len(levels)-1))
    plt.colorbar(cs)
    xticks(mytimes,myyears,rotation=-90)

    plotfile='figures/'+str(mytype)+'_'+str(myvar)+'_alldepths.pdf'
    plt.savefig(plotfile,dpi=300)
    print 'Saved figure file %s\n'%(plotfile)
예제 #30
0
파일: test_gevfit.py 프로젝트: guziy/GevFit
    def test_unimodality_of_GEV(self):
        x0 = 1500

        mu = 1000
        data = np.array([x0])

        ksi = np.arange(-2, 2, 0.01)
        sigma = np.arange(10, 8000, 10)

        n_ksi = len(ksi)
        n_sigma = len(sigma)

        z = np.zeros((n_ksi, n_sigma))

        for i, the_ksi in enumerate(ksi):
            for j, the_sigma in enumerate(sigma):
                z[i, j] = gevfit.objective_function_stationary_high([the_sigma, mu, the_ksi], data)


        sigma, ksi = np.meshgrid(sigma, ksi)
        z = np.ma.masked_where(z == gevfit.BIG_NUM, z)
        z = np.ma.masked_where(z > 9, z)

        plt.figure()
        plt.pcolormesh(ksi, sigma, z)
        plt.colorbar()
        plt.xlabel('$\\xi$')
        plt.ylabel('$\\sigma$')
        plt.title('$\\mu = %.1f, x = %.1f$' % (mu, x0))

        plt.show()


        pass
예제 #31
0
    def plot(varName, label, cmap, scale=None):
        # the file name is the variable followed by the zero-padded time intex
        imageFileName = '%s/%s_%04i.png' % (outFolder, varName, timeIndex)
        if (os.path.exists(imageFileName)):
            # the image exists so we're going to save time and not replot it
            return

        # get the variable from the netCDF file
        try:
            var = ncFile.variables[varName]
        except KeyError:
            return

        # the axes are 'xy', 'xz', or 'yz'
        axes = '%s%s' % (var.dimensions[2][1], var.dimensions[1][1])

        # get the extent based on the axes
        extent = extents[axes]

        # aspect ratio
        if (axes == 'xy'):
            # pixels are 1:1
            aspectRatio = None
        else:
            # stretch the axes to fill the plot area
            aspectRatio = 'auto'

        field = ncFile.variables[varName][timeIndex, :, :]

        missingValue = 9.9692099683868690e36
        if (numpy.ma.amax(field) == missingValue):
            # the array didnt' get masked properly, so do it manually
            field = numpy.ma.masked_array(field,
                                          mask=(field == missingValue),
                                          dtype=float)
        else:
            # convert from float32 to float64 to avoid overflow/underflow problems
            if hasattr(field, 'mask'):
                field = numpy.ma.masked_array(field,
                                              mask=field.mask,
                                              dtype=float)
            else:
                field = numpy.array(field, dtype=float)

        # scale the variable if a scale is given
        if scale is not None:
            field *= scale

        # get the plotting limits from the dictionary of limits we created
        (lower, upper) = limits[varName]

        # make a figure
        plt.figure(1, figsize=[16, 9], dpi=100, facecolor='w')

        # activate the specified colorbar and set the background color
        cmap = plt.get_cmap(cmap)
        cmap.set_bad(backgroundColor)

        # clear the figure from the last plot
        plt.clf()

        # plot the data as an image
        plt.imshow(field,
                   extent=extent,
                   cmap=cmap,
                   vmin=lower,
                   vmax=upper,
                   aspect=aspectRatio,
                   interpolation='nearest')

        plt.colorbar()
        plt.title(label)

        if (axes == 'xy'):
            # y axis will be upside down in imshow, which we don't want for xy
            plt.gca().invert_yaxis()
            plt.xlabel('x (km)')
            plt.ylabel('y (km)')
        elif (axes == 'xz'):
            # upside-down y axis is okay
            plt.xlabel('x (km)')
            plt.ylabel('z (m)')
        else:
            # upside-down y axis is okay
            plt.xlabel('y (km)')
            plt.ylabel('z (m)')

        if (axes in ['xz', 'yz']) and (z[0] < z[-1]):
            # flip the y axis
            plt.gca().invert_yaxis()

        # save the figure as an image
        plt.tight_layout()
        plt.draw()
        plt.savefig(imageFileName, dpi=100)
        plt.close()
예제 #32
0
    def plot_image(self, band):

        plt.imshow(band, cmap='RdYlGn')
        plt.colorbar()
        plt.show()
예제 #33
0
import numpy as np
import matplotlib.pyplot as mp
u = np.linspace(-2.5, 2.5, 501)
x, y = np.meshgrid(u, u)
z = np.sinc(x * y)
mp.gcf().set_facecolor(np.ones(3) * 240 / 255)
mp.subplot(121)
mp.title('Ordinary Contour', fontsize=16)
mp.xlabel('x', fontsize=12)
mp.ylabel('y', fontsize=12)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
cntr = mp.contour(x, y, z, 5, cmap='jet')
mp.clabel(cntr, inline_spacing=1, fmt='%.2f', fontsize=8, cmap='jet')
mp.colorbar(cntr).set_label('sinc-2D', fontsize=12)
mp.subplot(122)
mp.title('Filled Contour', fontsize=16)
mp.xlabel('x', fontsize=12)
mp.ylabel('y', fontsize=12)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
cntrf = mp.contourf(x, y, z, 20, cmap='jet')
mp.colorbar(cntrf).set_label('sinc-2D', fontsize=12)
mp.tight_layout()
mp.show()
예제 #34
0
def plot_confusion_matrix(y_true, y_pred, title=None, normalize=False, ax=None):
    """Generates confusion matrix plot for a given set of ground truth labels and classifier predictions.

    Args:
        y_true (array-like, shape (n_samples)):
            Ground truth (correct) target values.

        y_pred (array-like, shape (n_samples)):
            Estimated targets as returned by a classifier.

        title (string, optional): Title of the generated plot. Defaults to "Confusion Matrix" if
            `normalize` is True. Else, defaults to "Normalized Confusion Matrix.

        normalize (bool, optional): If True, normalizes the confusion matrix before plotting.
            Defaults to False.

        ax (:class:`matplotlib.axes.Axes`, optional): The axes upon which to plot
            the learning curve. If None, the plot is drawn on a new set of axes.

    Returns:
        ax (:class:`matplotlib.axes.Axes`): The axes on which the plot was drawn.

    Example:
        >>> import scikitplot.plotters as skplt
        >>> rf = RandomForestClassifier()
        >>> rf = rf.fit(X_train, y_train)
        >>> y_pred = rf.predict(X_test)
        >>> skplt.plot_confusion_matrix(y_test, y_pred, normalize=True)
        <matplotlib.axes._subplots.AxesSubplot object at 0x7fe967d64490>
        >>> plt.show()

        .. image:: _static/examples/plot_confusion_matrix.png
           :align: center
           :alt: Confusion matrix
    """
    if ax is None:
        fig, ax = plt.subplots(1, 1)

    cm = confusion_matrix(y_true, y_pred)
    classes = np.unique(y_true)

    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        cm = np.around(cm, decimals=2)

    if title:
        ax.set_title(title)
    elif normalize:
        ax.set_title('Normalized Confusion Matrix')
    else:
        ax.set_title('Confusion Matrix')

    image = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
    plt.colorbar(mappable=image)
    tick_marks = np.arange(len(classes))
    ax.set_xticks(tick_marks)
    ax.set_xticklabels(classes)
    ax.set_yticks(tick_marks)
    ax.set_yticklabels(classes)

    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        ax.text(j, i, cm[i, j],
                horizontalalignment="center",
                color="white" if cm[i, j] > thresh else "black")

    ax.set_ylabel('True label')
    ax.set_xlabel('Predicted label')

    return ax
예제 #35
0
def show_as_image(sample):
    bitmap = sample.reshape((13, 8))
    plt.figure()
    plt.imshow(bitmap, cmap='gray', interpolation='nearest')
    plt.colorbar()
    plt.show()
예제 #36
0
# Select the 0th row: digit
digit = samples[0,:]

# Print digit
print(digit)

# Reshape digit to a 13x8 array: bitmap
bitmap = digit.reshape(13,8)

# Print bitmap
print(bitmap)

# Use plt.imshow to display bitmap
plt.imshow(bitmap, cmap='gray', interpolation='nearest')
plt.colorbar()
plt.show()

##################


def show_as_image(sample):
    bitmap = sample.reshape((13, 8))
    plt.figure()
    plt.imshow(bitmap, cmap='gray', interpolation='nearest')
    plt.colorbar()
    plt.show()

# Import NMF
from sklearn.decomposition import NMF
예제 #37
0
파일: laserpulse.py 프로젝트: CU-PWFA/Beam
    def plot_current_field(self,
                           xlim=None,
                           flim=None,
                           log=False,
                           wrap_order=0):
        beam = self
        # XXX Not sure why I have to copy, I suspect the fft
        e = np.copy(beam.e[int(self.Nt / 2), :, :])
        I = beam.intensity_from_field(e)
        If = abs(fftshift(beam.fft(e)))**2
        fx, fy = beam.get_f()
        fx = fftshift(fx)
        fy = fftshift(fy)
        phase = np.angle(e)

        # Images
        X = beam.X
        Y = beam.Y
        ext = [-X / 2, X / 2, -Y / 2, Y / 2]
        extf = [fx[0], fx[-1], fy[0], fy[-1]]
        plt.figure(figsize=(16, 4), dpi=150)
        plt.subplot(131)
        plt.imshow(beam.prep_data(I),
                   aspect='auto',
                   extent=ext,
                   cmap='viridis')
        cb = plt.colorbar()
        cb.set_label(r'Intensity ($10^{14}$ W/cm^2)')
        plt.xlabel(r'$x$ (um)')
        plt.ylabel(r'$y$ (um)')
        if xlim != None:
            plt.xlim(xlim)
            plt.ylim(xlim)

        if wrap_order == 0:
            axis0 = 0
            axis1 = 1
        elif wrap_order == 1:
            axis0 = 1
            axis1 = 0
        plt.subplot(132)
        plt.imshow(np.unwrap(np.unwrap(beam.prep_data(phase), axis=axis0),
                             axis=axis1),
                   aspect='auto',
                   extent=ext,
                   cmap='viridis')
        cb = plt.colorbar()
        cb.set_label(r'Phase (rad)')
        plt.xlabel(r'$x$ (um)')
        plt.ylabel(r'$y$ (um)')
        if xlim != None:
            plt.xlim(xlim)
            plt.ylim(xlim)

        plt.subplot(133)
        plt.imshow(beam.prep_data(If),
                   aspect='auto',
                   extent=extf,
                   cmap='viridis')
        cb = plt.colorbar()
        cb.set_label(r'Intensity (arb unit)')
        plt.xlabel(r'$f_x$ (um$^{-1}$)')
        plt.ylabel(r'$f_y$ (um$^{-1}$)')
        if flim != None:
            plt.xlim(flim)
            plt.ylim(flim)

        plt.tight_layout()
        plt.show()
        # Lineouts
        # We've already taken the transpose so y is the first index
        indy = int(beam.Ny / 2)
        indx = int(beam.Nx / 2)
        x = beam.x
        y = beam.y
        plt.figure(figsize=(16, 4), dpi=150)
        plt.subplot(131)
        plt.plot(x, I[:, indy], label='y')
        plt.plot(y, I[indx, :], 'm--', label='x')
        plt.legend()
        plt.xlabel(r'$x$ (um)')
        plt.ylabel(r'Intensity ($10^{14}$ W/cm^2)')
        if xlim != None:
            plt.xlim(xlim)

        plt.subplot(132)
        plt.plot(x, np.unwrap(phase[:, indy]), label='x')
        plt.plot(y, np.unwrap(phase[indx, :]), 'm--', label='y')
        plt.legend()
        plt.xlabel(r'$x$ (um)')
        plt.ylabel(r'Phase (rad)')
        if xlim != None:
            plt.xlim(xlim)

        plt.subplot(133)
        plt.plot(fx, If[:, indy], label='x')
        plt.plot(fy, If[indx, :], 'm--', label='y')
        plt.legend()
        plt.xlabel(r'$f_x$ (um$^{-1}$)')
        plt.ylabel(r'Intensity (arb unit)')
        if flim != None:
            plt.xlim(flim)

        plt.tight_layout()
        plt.show()

        if log == True:
            # Lineouts
            plt.figure(figsize=(16, 4), dpi=150)
            plt.subplot(131)
            plt.plot(x, I[:, indy], label='x')
            plt.plot(y, I[indx, :], 'm--', label='y')
            plt.legend()
            plt.xlabel(r'$x$ (um)')
            plt.ylabel(r'Intensity ($10^{14}$ W/cm^2)')
            plt.yscale('log')
            if xlim != None:
                plt.xlim(xlim)

            plt.subplot(132)
            plt.plot(x, np.unwrap(phase[:, indy]), label='x')
            plt.plot(y, np.unwrap(phase[indx, :]), 'm--', label='y')
            plt.legend()
            plt.xlabel(r'$x$ (um)')
            plt.ylabel(r'Phase (rad)')
            plt.yscale('log')
            if xlim != None:
                plt.xlim(xlim)

            plt.subplot(133)
            plt.plot(fx, If[:, indy], label='x')
            plt.plot(fy, If[indx, :], 'm--', label='y')
            plt.legend()
            plt.xlabel(r'$f_x$ (um$^{-1}$)')
            plt.ylabel(r'Intensity (arb unit)')
            plt.yscale('log')
            if flim != None:
                plt.xlim(flim)

            plt.tight_layout()
            plt.show()
예제 #38
0
    async def poisson(
        self, interaction: discord.Interaction, team1: str, team2: str, num_games: int = 5, image: bool = False
    ):
        """Predicts a series between two teams using a poisson process

        Args:
            team1 (str): Team name
            team2 (str): Team name
            numGames (int, optional): Number of games in the series (up to 15 games)
            image (bool, optional): Whether or not to include a visualization of the poisson distribution
        """
        async with interaction.channel.typing():

            await interaction.response.defer()

            team1 = team1.title()
            team2 = team2.title()

            try:
                league = self.identifier.find_league(team1)
            except TypeError:
                return await interaction.followup.send(f"Could not understand team: {team1}", ephemeral = True)
            try:
                if league != self.identifier.find_league(team2):
                    return await interaction.followup.send("Teams must be from the same league", ephemeral = True)
            except TypeError:
                return await interaction.followup.send(f"Couldn't understand team: {team2}")

            if num_games > 15:
                return await interaction.followup.send("To avoid spam and rate limiting, 15 is the maximum number of games supported.", ephemeral = True)

            handler = self.poissonHandler

            if image:
                img: AxesImage = plt.imshow(
                    handler.generatePoisson(team1, team2, league)[0]
                )
                plt.title(f"Poisson Distribution: {team1} vs. {team2}", fontsize=16)
                cb = plt.colorbar(img, label="Probability of result")
                plt.xlabel(f"{team1} Goals", fontsize=10)
                plt.ylabel(f"{team2} Goals", fontsize=10)
                img.figure.savefig("poisson.png", bbox_inches="tight")
                cb.remove()  # Remove the colorbar so that it doesn't stay for the next function call

                path = os.path.abspath("poisson.png")
                file = discord.File(path)
                await interaction.followup.send(file=file)
                file.close()
                os.remove(path)

            if not interaction.response.is_done():
                await interaction.followup.send(f"{team1} vs. {team2}")

            team1Poisson, team2Poisson = handler.getOneWayPoisson(league, team1, team2)
            team1Wins = 0
            team2Wins = 0
            i = 1
            while i <= num_games:
                team1Goals = np.random.choice([0, 1, 2, 3, 4, 5], p=team1Poisson)
                team2Goals = np.random.choice([0, 1, 2, 3, 4, 5], p=team2Poisson)
                if team1Goals == team2Goals:
                    # Redo this loop if tied
                    continue
                elif team1Goals > team2Goals:
                    await interaction.channel.send(
                        f"**Game {i} result:** {team1} {team1Goals} - {team2Goals} {team2}"
                    )
                    team1Wins += 1
                elif team2Goals > team1Goals:
                    await interaction.channel.send(
                        f"**Game {i} result:** {team2} {team2Goals} - {team1Goals} {team1}"
                    )
                    team2Wins += 1

                i += 1
                if team1Wins > (num_games / 2):
                    return await interaction.channel.send(
                        f"{team1} has won the series with a score of {team1Wins} - {team2Wins}"
                    )
                elif team2Wins > (num_games / 2):
                    return await interaction.channel.send(
                        f"{team2} has won the series with a score of {team2Wins} - {team1Wins}"
                    )

        return await interaction.channel.send(
            f"The series has ended in a {team1Wins} - {team2Wins} draw. Consider using an odd number of games"
        )
예제 #39
0
import numpy as np
import matplotlib.pyplot as plt

#image_data
a = np.array([
    0.313660827978, 0.365348418405, 0.423733120134, 0.365348418405,
    0.439599930621, 0.525083754405, 0.423733120134, 0.525083754405,
    0.651536351379
]).reshape(3, 3)

plt.imshow(a, interpolation='nearest', cmap='bone',
           origin='upper')  #upper lower
plt.colorbar(shrink=0.9)

plt.xticks(())
plt.yticks(())

plt.show()
예제 #40
0
Jcvc_opt = np.load(fname2+"/Jcvc_opt.npy")
Jcve_opt = np.load(fname2+"/Jcve_opt.npy")
Lmc = np.load(fname2+"/Lmc.npy")
Lme = np.load(fname2+"/Lme.npy")
nuc_opt = np.load(fname2+"/nuc_opt.npy")
nue_opt = np.load(fname2+"/nue_opt.npy")
chic_opt = np.load(fname2+"/chic_opt.npy")
chie_opt = np.load(fname2+"/chie_opt.npy")

Jhis[Jhis>=0.5] = 0.5

plt.figure()
X,Y = np.meshgrid(ahis,ehis)
cp = plt.contourf(X,Y,Jhis,20)
#.clabel(cp,colors="white",fmt="%2.1f",fontsize=13)
cb = plt.colorbar(cp)
cb.set_label("optimal estimation error",fontsize=LabelSize)
cb.set_ticks([0.378,0.396,0.414,0.432,0.450,0.468,0.486,0.500])
cb.set_ticklabels([r"0.378",r"0.396",r"0.414",r"0.432",r"0.450",r"0.468",r"0.486",r"$\geq 0.500$"])
plt.xlabel(r"contraction rate $\alpha$",fontsize=LabelSize)
plt.ylabel(r"design parameter $\varepsilon$",fontsize=LabelSize)
#plt.title(tit1,fontsize=FontSize)
fname = "figs/alpeps.pdf"
plt.savefig(fname,bbox_inches='tight',dpi=DPI)
plt.show()


data1 = {'score': np.sum((xhis-zhis)**2,1)}
data2 = {'score': np.sum((x2his-z2his)**2,1)}
data3 = {'score': np.sum((x3his-z3his)**2,1)}
data4 = {'score': np.sum((x4his-z4his)**2,1)}
def sufficient_summary(y, f, out_label=None, opts=None):
    """Make a summary plot with the given predictors and responses.

    Parameters
    ----------
    y : ndarray
        M-by-1 or M-by-2 matrix that contains the values of the predictors for 
        the summary plot.
    f : ndarray
        M-by-1 matrix that contains the corresponding responses
    out_label : str, optional 
        a label for the quantity of interest (default None)
    opts : dict, optional 
        a dictionary with some plot options (default None)

    Notes
    -----
    If `y.shape[1]` is 1, then this function produces only the univariate
    summary plot. If `y.shape[1]` is 2, then this function produces both the
    univariate and the bivariate summary plot, where the latter is a scatter
    plot with the first column of `y` on the horizontal axis, the second
    column of `y` on the vertical axis, and the color corresponding to `f`.
    """
    if opts == None:
        opts = plot_opts()

    # check sizes of y
    n = y.shape[1]
    if n == 1:
        y1 = y
    elif n == 2:
        y1 = y[:,0]
        y2 = y[:,1]
    else:
        raise Exception('Sufficient summary plots cannot be made in more than 2 dimensions.')

    # set labels for plots
    if out_label is None:
        out_label = 'Output'

    plt.figure(figsize=(7,7))
    plt.rc('font', **opts['myfont'])
    plt.plot(y1, f, 'bo', markersize=12)
    plt.xlabel('Active variable')
    plt.ylabel(out_label)
    plt.grid(True)
    if opts['savefigs']:
        figname = 'figs/ssp1_' + out_label + opts['figtype']
        plt.savefig(figname, dpi=300, bbox_inches='tight', pad_inches=0.0)

    if n==2:

        plt.figure(figsize=(7,7))
        plt.rc('font', **opts['myfont'])
        plt.scatter(y1, y2, c=f, s=150.0, vmin=np.min(f), vmax=np.max(f))
        plt.xlabel('Active variable 1')
        plt.ylabel('Active variable 2')
        ymin = 1.1*np.amin([np.amin(y1), np.amin(y2)])
        ymax = 1.1*np.amax([np.amax(y1), np.amax(y2)])
        plt.axis([ymin, ymax, ymin, ymax])
        plt.axes().set_aspect('equal')
        plt.grid(True)
        plt.title(out_label)
        plt.colorbar()
        if opts['savefigs']:
            figname = 'figs/ssp2_' + out_label + opts['figtype']
            plt.savefig(figname, dpi=300, bbox_inches='tight', pad_inches=0.0)


    show_plot(plt)
예제 #42
0
파일: lsm.py 프로젝트: mrava87/pylops
rz = 20 * np.ones(nr)
recs = np.vstack((rx, rz))
dr = recs[0, 1] - recs[0, 0]

# Sources
ns = 10
sx = np.linspace(dx * 10, (nx - 10) * dx, ns)
sz = 10 * np.ones(ns)
sources = np.vstack((sx, sz))
ds = sources[0, 1] - sources[0, 0]

plt.figure(figsize=(10, 5))
im = plt.imshow(vel.T, cmap="gray", extent=(x[0], x[-1], z[-1], z[0]))
plt.scatter(recs[0], recs[1], marker="v", s=150, c="b", edgecolors="k")
plt.scatter(sources[0], sources[1], marker="*", s=150, c="r", edgecolors="k")
plt.colorbar(im)
plt.axis("tight")
plt.xlabel("x [m]"), plt.ylabel("y [m]")
plt.title("Velocity")
plt.xlim(x[0], x[-1])

plt.figure(figsize=(10, 5))
im = plt.imshow(refl.T, cmap="gray", extent=(x[0], x[-1], z[-1], z[0]))
plt.scatter(recs[0], recs[1], marker="v", s=150, c="b", edgecolors="k")
plt.scatter(sources[0], sources[1], marker="*", s=150, c="r", edgecolors="k")
plt.colorbar(im)
plt.axis("tight")
plt.xlabel("x [m]"), plt.ylabel("y [m]")
plt.title("Reflectivity")
plt.xlim(x[0], x[-1])
A_B = np.r_[A[:select], B[:select]]

######################################################################
# Before training, the separation between the classes is not recognizable
# in the Gram matrix:
#

gram_before = [[overlaps(init_pars, X1=[x1], X2=[x2]) for x1 in A_B]
               for x2 in A_B]

ax = plt.subplot(111)
im = ax.matshow(gram_before, vmin=0, vmax=1)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(im, cax=cax)
plt.show()

######################################################################
# After training, the gram matrix clearly separates the two classes.
#

gram_after = [[overlaps(pretrained_pars, X1=[x1], X2=[x2]) for x1 in A_B]
              for x2 in A_B]

ax = plt.subplot(111)
im = ax.matshow(gram_after, vmin=0, vmax=1)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(im, cax=cax)
plt.show()
data_set = pd.read_csv('Rap.csv')                      # Считываем данные SCV-файла с DataSet'ом
bpm = data_set['bpm']                                  # Переменная для параметра BPM в каждой строке
year = data_set['year']                                # Переменная для параметра "год релиза" в каждой строке

plt.scatter(                                           # Построение точечного графика и его настройка
	bpm, year,
	c=bpm,
	s=bpm*1.5,
	cmap='gist_heat',
	edgecolor='black',
	linewidth=.7
)

bar = plt.colorbar(                                    # Построение шкалы BPM
			orientation='horizontal',
			shrink=0.8,
			extend='both',
			extendfrac=.1
)

bar.set_label('Шкала ударов в минуту', fontsize=18)    # Подпись шкалы

plt.title('Популярность скорости '                     # Заголовок графика
		  'исполнения в Rap\'е ', fontsize=25)

plt.xlabel('BPM', fontsize=18)                         # Ось абсцисс
plt.ylabel('Год релиза', fontsize=18)                  # Ось ординат

plt.tight_layout()                                     # Настройка параметров подзаголовков в области отображения
plt.show()                                             # Вывод на экран
예제 #45
0
파일: plot_U.py 프로젝트: senli2018/FCGAN
# 加载数据集
feature=np.load('./checkpoints/20190424-2211/max/feature_fcgan.npy')
#feature=np.random.rand(20000,100)
t_features=[]
t_labels=[]
for i in range(len(randIdx)):
    t_features.append(feature[randIdx[i]])
    t_labels.append(y_labels[randIdx[i]])
#print(t_feature.sum())
print(np.shape(t_features))
print(np.shape(t_labels))
iris = load_iris()
# 共有150个例子, 数据的类型是numpy.ndarray
print(iris.data.shape)
# 对应的标签有0,1,2三种
print(iris.target)
# 使用TSNE进行降维处理。从4维降至2维。
#tsne = TSNE(n_components=2, learning_rate=100).fit_transform(feature)
tsne = TSNE(n_components=2, learning_rate=100).fit_transform(t_features)

# 使用PCA 进行降维处理
pca = PCA().fit_transform(t_features)
# 设置画布的大小
plt.figure(figsize=(12, 6))
plt.subplot(121)
plt.scatter(tsne[:, 0], tsne[:, 1], c=t_labels)
plt.subplot(122)
plt.scatter(pca[:, 0], pca[:, 1], c=t_labels)
plt.colorbar()#使用这一句就可以分辨出,颜色对应的类了!神奇啊。
plt.savefig('plot.pdf')
예제 #46
0
# Plot up the 'Old-Fashioned Way' - Using matplotlib.pyplot pcolormesh
import numpy as np
fig = plt.figure(figsize=(16, 12))
ax = fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree())
ax.set_extent((-100, -60, 16, 52), crs=ccrs.PlateCarree())
im = ax.pcolormesh(oceanSST['longitude'].values,
                   oceanSST['latitude'].values,
                   oceanSST['Band15'][0].values,
                   cmap='jet',
                   transform=ccrs.PlateCarree(),
                   vmin=250,
                   vmax=300)
ax.add_feature(cf.COASTLINE)
ax.add_feature(cf.BORDERS)
plt.colorbar(im, label="Degrees Kelvin")
# Plot lat / lon ticks
plt.xticks(
    np.arange(np.min(oceanSST['longitude'].values),
              np.max(oceanSST['longitude'].values), 10))
plt.yticks(
    np.arange(np.min(oceanSST['latitude'].values),
              np.max(oceanSST['latitude'].values), 10))
# Plot x/y labels
plt.xlabel("Longitude")
plt.ylabel("Latitude")
# Plot Title
plt.title("Band 15 Brightness Temperature")

# What about SST?
# This time we'll plot with the handy-dandy xarray plotting function
예제 #47
0
def plot_confusion_matrix(phase, path, class_names):
    """Plots the confusion matrix using matplotlib.

    Parameter
    ---------
    phase : str
      String value indicating for what phase is the confusion matrix, i.e. training/validation/testing
    path : str
      Directory where the predicted and actual label NPY files reside
    class_names : str
      List consisting of the class names for the labels

    Returns
    -------
    conf : array, shape = [num_classes, num_classes]
      Confusion matrix
    accuracy : float
      Predictive accuracy
    """

    # list all the results files
    files = list_files(path=path)

    labels = np.array([])

    for file in files:
        labels_batch = np.load(file)
        labels = np.append(labels, labels_batch)

        if (files.index(file) / files.__len__()) % 0.2 == 0:
            print("Done appending {}% of {}".format(
                (files.index(file) / files.__len__()) * 100, files.__len__()))

    labels = np.reshape(labels, newshape=(labels.shape[0] // 4, 4))

    print("Done appending NPY files.")

    # get the predicted labels
    predictions = labels[:, :2]

    # get the actual labels
    actual = labels[:, 2:]

    # create a TensorFlow session
    with tf.Session() as sess:

        # decode the one-hot encoded labels to single integer
        predictions = sess.run(tf.argmax(predictions, 1))
        actual = sess.run(tf.argmax(actual, 1))

    # get the confusion matrix based on the actual and predicted labels
    conf = confusion_matrix(y_true=actual, y_pred=predictions)

    # create a confusion matrix plot
    plt.imshow(conf, cmap=plt.cm.Purples, interpolation="nearest")

    # set the plot title
    plt.title("Confusion Matrix for {} Phase".format(phase))

    # legend of intensity for the plot
    plt.colorbar()

    tick_marks = np.arange(len(class_names))
    plt.xticks(tick_marks, class_names, rotation=45)
    plt.yticks(tick_marks, class_names)

    plt.tight_layout()
    plt.ylabel("Actual label")
    plt.xlabel("Predicted label")

    # show the plot
    plt.show()

    # get the accuracy of the phase
    accuracy = (conf[0][0] + conf[1][1]) / labels.shape[0]

    # return the confusion matrix and the accuracy
    return conf, accuracy
예제 #48
0
def plot():

    detName = "conf/P42574A_grad%0.2f_pcrad%0.2f_pclen%0.2f.conf" % (0.05, 2.5,
                                                                     1.65)
    det = Detector(detName, timeStep=1, numSteps=10)

    data = np.loadtxt("posterior_sample.txt")
    num_samples = len(data)
    print "found %d samples" % num_samples

    r_arr = np.empty(num_samples)
    z_arr = np.empty(num_samples)

    h_100_mu0 = np.empty(num_samples)
    h_100_beta = np.empty(num_samples)
    h_100_e0 = np.empty(num_samples)
    h_111_mu0 = np.empty(num_samples)
    h_111_beta = np.empty(num_samples)
    h_111_e0 = np.empty(num_samples)

    tf = np.empty((6, num_samples))

    for (idx, params) in enumerate(data):
        rad, phi, theta, scale, t0, smooth = params[:6]
        r_arr[idx] = rad * np.cos(theta)
        z_arr[idx] = rad * np.sin(theta)
        h_100_mu0[idx], h_100_beta[idx], h_100_e0[idx], h_111_mu0[
            idx], h_111_beta[idx], h_111_e0[idx] = params[
                velo_first_idx:velo_first_idx + 6]
        tf[:, idx] = params[tf_first_idx:tf_first_idx + 6]

    positionFig = plt.figure(0)
    plt.clf()
    xedges = np.linspace(0, np.around(det.detector_radius, 1),
                         np.around(det.detector_radius, 1) * 10 + 1)
    yedges = np.linspace(0, np.around(det.detector_length, 1),
                         np.around(det.detector_length, 1) * 10 + 1)
    plt.hist2d(r_arr, z_arr, norm=LogNorm(), bins=[xedges, yedges])
    plt.colorbar()
    plt.xlabel("r from Point Contact (mm)")
    plt.ylabel("z from Point Contact (mm)")

    plotnum = 600
    veloFig = plt.figure(1)
    tf0 = veloFig.add_subplot(plotnum + 11)
    tf1 = veloFig.add_subplot(plotnum + 12, )
    tf2 = veloFig.add_subplot(plotnum + 13, )
    tf3 = veloFig.add_subplot(plotnum + 14, )
    tf4 = veloFig.add_subplot(plotnum + 15, )
    tf5 = veloFig.add_subplot(plotnum + 16, )

    tf0.set_ylabel('h_100_mu0')
    tf1.set_ylabel('h_100_beta')
    tf2.set_ylabel('h_100_e0')
    tf3.set_ylabel('h_111_mu0')
    tf4.set_ylabel('h_111_beta')
    tf5.set_ylabel('h_111_e0')

    num_bins = 100
    [n, b, p] = tf0.hist(h_100_mu0, bins=num_bins)
    [n, b, p] = tf1.hist(h_100_beta, bins=num_bins)
    [n, b, p] = tf2.hist(h_100_e0, bins=num_bins)
    [n, b, p] = tf3.hist(h_111_mu0, bins=num_bins)
    [n, b, p] = tf4.hist(h_111_beta, bins=num_bins)
    [n, b, p] = tf5.hist(h_111_e0, bins=num_bins)

    plotnum = 600
    tfFig = plt.figure(2)
    tf0 = tfFig.add_subplot(plotnum + 11)
    tf1 = tfFig.add_subplot(plotnum + 12, )
    tf2 = tfFig.add_subplot(plotnum + 13, )
    tf3 = tfFig.add_subplot(plotnum + 14, )
    tf4 = tfFig.add_subplot(plotnum + 15, )
    tf5 = tfFig.add_subplot(plotnum + 16, )

    tf0.set_ylabel('b_ov_a')
    tf1.set_ylabel('c')
    tf2.set_ylabel('d')
    tf3.set_ylabel('rc1')
    tf4.set_ylabel('rc2')
    tf5.set_ylabel('rcfrac')

    num_bins = 100
    [n, b, p] = tf0.hist(tf[0, :], bins=num_bins)
    [n, b, p] = tf1.hist(tf[1, :], bins=num_bins)
    [n, b, p] = tf2.hist(tf[2, :], bins=num_bins)
    [n, b, p] = tf3.hist(tf[3, :], bins=num_bins)
    [n, b, p] = tf4.hist(tf[4, :], bins=num_bins)
    [n, b, p] = tf5.hist(tf[5, :], bins=num_bins)

    plt.show()
                     format='%.0e')
        #plt.contourf(x,y,data,ticks3,norm=colors.LogNorm(vmin=1e-5,vmax=8e4),cmap='RdYlBu_r', format = '%.0e')
        #plt.contourf(x,y,data,ticks3,norm=colors.LogNorm(vmin=pow(10,1),vmax=pow(10,6)),cmap=plt.cm.jet,resolution='c', format = '%.0e')
        #plt.clim((pow(10,3),pow(10,7)))
        plt.plot(lat1, trop_height.data, 'k--')
        mn = 0.1
        mx = 100000
        md = (mx - mn) / 2
        print('\nThe maximum value of particle number is      = ',
              np.max(data))
        print('\nThe mean value of particle number at 11.5km  = ',
              np.mean(data[39, :]), '\n')

        #plt.contourf(x,y,data,cmap=,resolution='c')
        formatter = LogFormatter(10, labelOnlyBase=False)
        cbar = plt.colorbar()
        #cbar=plt.colorbar(ticks=ticks3, format=formatter)
        #cbar.set_ticks(ticks4)
        cbar.set_ticks(ticks5)

        #ticks3=['1','5','10','20','50','1E2','2e2','5e2','1e3','2e3','5e3','1e4','3e4','6e4','1e5','2e5']

        cbar.set_ticklabels(ticks5_label)
        #cbar.set_ticklabels(ticks3_label)
        #plt.yticks(['1','10'])
        #plt.clim((pow(10,3),pow(10,7)))
        plt.xlabel('latitude')
        plt.ylabel('altitude (km)')
        #plt.title('Total Particle number concentration (cm'+u'\u207B\u00B3'+')')
        plt.title('Change in Particle number concentration (cm' +
                  u'\u207B\u00B3' + ') - PD')
예제 #50
0
    def plot_event(self, event):
        self.event = event
        self.fig = plt.figure(figsize=(15, 12))

        x_pad = 0.04
        y_pad = 0.05
        extra_y_pad_top = -0.02
        extra_x_pad_left = 0.02
        y_sep_middle = 0.06
        start_x = x_pad + extra_x_pad_left
        start_y = y_pad
        full_x = 1 - x_pad - start_x
        full_y = 1 - y_pad - start_y - y_sep_middle - extra_y_pad_top
        row_y = full_y / 4
        column_x = full_y / 4

        title = 'Event %s from %s' % (event.event_number, event.dataset_name)
        plt.suptitle(title, fontsize=16, horizontalalignment='right', x=0.99)

        ##
        # Channel waveforms plot
        ##
        self.channel_wv_ax = plt.axes([start_x, start_y, full_x, row_y])
        q = PlotChannelWaveforms2D(self.config, self.processor)
        q.plot_event(event, ax=self.channel_wv_ax)
        self.chwvs_2s_time_scale = q.time_scale
        # TODO: Make top, bottom, veto yticks on right y axis?

        ##
        # Event waveform plot
        ##
        event_wv_ax = plt.axes([start_x, start_y + row_y, full_x, row_y],
                               sharex=self.channel_wv_ax)
        q = PlotSumWaveformEntireEvent(self.config, self.processor)
        q.plot_event(event, show_legend=True, ax=event_wv_ax)
        event_wv_ax.get_xaxis().set_visible(False)

        ##
        # Whereami plot
        ##
        whereami_height = 0.01
        self.whereami_ax = plt.axes(
            [start_x, start_y + 2 * row_y, full_x, whereami_height],
            sharex=self.channel_wv_ax)
        self.whereami_ax.set_axis_off()

        ##
        # Event and peak text
        ##
        x_sep_text = 0.07
        y_sep_text = 0.05
        x = start_x + 2 * column_x + x_sep_text
        y = start_y + 4 * row_y + y_sep_middle - y_sep_text
        event_text = ''
        event_text += 'Event recorded at %s UTC, %09d ns\n' % (
            epoch_to_human_time(
                self.trigger_time_ns), self.trigger_time_ns % units.s)
        # suspicious_channels = np.where(event.is_channel_suspicious)[0]
        # event_text += 'Suspicious channels (# hits rejected):\n ' + ', '.join([
        #     '%s (%s)' % (ch, event.n_hits_rejected[ch]) for ch in suspicious_channels]) + '\n'
        self.fig.text(x,
                      y,
                      self.wrap_multiline(event_text, self.max_characters),
                      verticalalignment='top')
        self.peak_text = self.fig.text(x,
                                       start_y + 3 * row_y + y_sep_middle,
                                       '',
                                       verticalalignment='top')

        ##
        # Peak hitpatterns
        ##
        y = start_y + 2 * row_y + y_sep_middle
        self.bot_hitp_ax = plt.axes([start_x, y, column_x, row_y])
        self.top_hitp_ax = plt.axes([start_x, y + row_y, column_x, row_y],
                                    sharex=self.bot_hitp_ax)
        self.top_hitp_ax.get_xaxis().set_visible(False)

        ##
        # Get the TPC peaks
        ##
        # Did the user specify a peak number? If so, get it
        self.peak_i = self.starting_peak_per_event.get(event.event_number,
                                                       None)
        self.peaks = event.get_peaks_by_type(detector='tpc',
                                             sort_key='left',
                                             reverse=False)
        self.peaks = [p for p in self.peaks if p.type != 'lone_hit']
        if len(self.peaks) == 0:
            self.log.debug(
                "No peaks in this event, will be a boring peakviewer plot...")
            return event

        ##
        # Peak Waveforms
        ##
        x_sep = 0.03
        x = start_x + column_x + x_sep
        self.peak_chwvs_ax = plt.axes([x, y, column_x - x_sep, row_y])
        self.peak_chwvs_ax.yaxis.tick_right()
        self.peak_chwvs_ax.yaxis.set_label_position("right")
        self.peak_sumwv_ax = plt.axes([x, y + row_y, column_x - x_sep, row_y],
                                      sharex=self.peak_chwvs_ax)
        self.peak_sumwv_ax.yaxis.tick_right()
        self.peak_sumwv_ax.yaxis.set_label_position("right")
        self.peak_sumwv_ax.get_xaxis().set_visible(False)
        q = PlotChannelWaveforms2D(self.config, self.processor)
        q.plot_event(event,
                     ax=self.peak_chwvs_ax,
                     show_channel_group_labels=False)

        ##
        # Buttons
        ##
        x = start_x + 2 * column_x + x_sep
        button_width = 0.08
        button_height = 0.03
        buttons_x_space = 0.04
        self.make_button([x, y, button_width, button_height], 'Prev peak',
                         self.draw_prev_peak)
        self.make_button([x + button_width, y, button_width, button_height],
                         'Next peak', self.draw_next_peak)
        self.make_button([
            x + 2 * button_width + buttons_x_space, y, button_width,
            button_height
        ], 'Main S1', self.draw_main_s1)
        self.make_button([
            x + 3 * button_width + buttons_x_space, y, button_width,
            button_height
        ], 'Main S2', self.draw_main_s2)

        ##
        # Select and draw the desired peak
        ##
        if event.event_number in self.starting_peak_per_event:
            # The user specified the left boundary of the desired starting peak
            desired_left = self.starting_peak_per_event[event.event_number]
            self.peak_i = np.argmin(
                [np.abs(p.left - desired_left) for p in self.peaks])
            if self.peaks[self.peak_i].left != desired_left:
                self.log.warning(
                    'There is no (tpc, non-lone-hit) peak starting at index %d! '
                    'Taking closest peak (%d-%d) instead.' %
                    (desired_left, self.peaks[self.peak_i].left,
                     self.peaks[self.peak_i].right))
            self.log.debug("Selected user-defined peak %d" % self.peak_i)
            self.draw_peak()

        elif self.starting_peak == 'first':
            self.peak_i = 0
            self.draw_peak()

        elif self.starting_peak == 'main_s1':
            self.draw_main_s1()

        elif self.starting_peak == 'main_s2':
            self.draw_main_s2()

        if self.peak_i is None:
            # Either self.starting_peak is 'largest' or one of the other peak selections failed
            # (e.g. couldn't draw the main s1 because there is no S1)
            # Just pick the largest peak (regardless of its type)
            self.peak_i = np.argmax([p.area for p in self.peaks])
            self.log.debug("Largest peak is %d (peak list runs from 0-%d)" %
                           (self.peak_i, len(self.peaks) - 1))
            self.draw_peak()

        # Draw the color bar for the top or bottom hitpattern plot (they share them)
        # In the rare case the top has no data points, take it from the bottom
        sc_for_hitp = self.top_hitp_sc if self.peaks[
            self.peak_i].area_fraction_top != 0 else self.bot_hitp_sc
        plt.colorbar(sc_for_hitp, ax=[self.top_hitp_ax, self.bot_hitp_ax])
예제 #51
0
    r_max, g_r_max = find_local_maxima(r, g_r_t[j], r_guess=0.45)
    plt.plot(r_max, g_r_max, 'k.')
    plt.plot(r, g_r_t[j], label='{:.3f} ps'.format(t[j]))


# Save output to text files
np.savetxt('vhf.txt', g_r_t)
np.savetxt('r.txt', r)
np.savetxt('t.txt', t)


ax.set_xlim((0, 0.8))
ax.set_ylim((0, 3.0))
ax.legend(loc=0)
ax.set_xlabel(r'Radial coordinate, $r$, $nm$')
ax.set_ylabel(r'Van Hove Function, , $g(r, t)$, $unitiless$')
plt.savefig('van-hove-function.pdf')


fig, ax = plt.subplots()

heatmap = ax.imshow(g_r_t-1, vmin=-0.04, vmax=0.04, cmap='RdYlGn_r', origin='lower', extent=(r[0], r[-1], t[0], t[-1]))
ax.grid(False)
ax.set_xlabel(r'Radial position, $r$, $nm$')
ax.set_ylabel(r'Time, $t$, $ps$')

colorbar = plt.colorbar(heatmap)
colorbar.set_label(r'$g(r, t) - 1$', rotation=270)

fig.savefig('heatmap.pdf')
def plot_hex_map(d_matrix,
                 titles=[],
                 colormap=cm.gray,
                 shape=[1, 1],
                 comp_width=5,
                 hex_shrink=1.0,
                 fig=None,
                 colorbar=True):
    """
    Plot hexagon map where each neuron is represented by a hexagon. The hexagon
    color is given by the distance between the neurons (D-Matrix)

    Args:
    - grid: Grid dictionary (keys: centers, x, y ),
    - d_matrix: array contaning the distances between each neuron
    - w: width of the map in inches
    - title: map title

    Returns the Matplotlib SubAxis instance
    """

    d_matrix = np.flip(d_matrix, axis=0)

    def create_grid_coordinates(x, y):
        coordinates = [
            x for row in -1 * np.array(list(range(x))) for x in list(
                zip(np.arange(((row) % 2) * 0.5, y +
                              ((row) % 2) * 0.5), [0.8660254 * (row)] * y))
        ]
        return (np.array(list(reversed(coordinates))), x, y)

    if d_matrix.ndim < 3:
        d_matrix = np.expand_dims(d_matrix, 2)

    if len(titles) != d_matrix.shape[2]:
        titles = [""] * d_matrix.shape[2]

    n_centers, x, y = create_grid_coordinates(*d_matrix.shape[:2])

    # Size of figure in inches
    if fig is None:
        xinch, yinch = comp_width * shape[1], comp_width * (x / y) * shape[0]
        fig = plt.figure(figsize=(xinch, yinch), dpi=72.)

    for comp, title in zip(range(d_matrix.shape[2]), titles):
        ax = fig.add_subplot(shape[0], shape[1], comp + 1, aspect='equal')

        # Get pixel size between two data points
        xpoints = n_centers[:, 0]
        ypoints = n_centers[:, 1]
        ax.scatter(xpoints, ypoints, s=0.0, marker='s')
        ax.axis([
            min(xpoints) - 1.,
            max(xpoints) + 1.,
            min(ypoints) - 1.,
            max(ypoints) + 1.
        ])
        xy_pixels = ax.transData.transform(np.vstack([xpoints, ypoints]).T)
        xpix, ypix = xy_pixels.T

        # discover radius and hexagon
        apothem = hex_shrink * (xpix[1] - xpix[0]) / math.sqrt(3)
        area_inner_circle = math.pi * (apothem**2)
        dm = d_matrix[:, :, comp].reshape(np.multiply(*d_matrix.shape[:2]))
        collection_bg = RegularPolyCollection(
            numsides=6,  # a hexagon
            rotation=0,
            sizes=(area_inner_circle, ),
            array=dm,
            cmap=colormap,
            offsets=n_centers,
            transOffset=ax.transData,
        )
        ax.add_collection(collection_bg, autolim=True)

        ax.axis('off')
        ax.autoscale_view()
        ax.set_title(title)  #, fontdict={"fontsize": 3 * comp_width})
        divider = make_axes_locatable(ax)
        cax = divider.append_axes("right", size="5%", pad=0.05)
        cbar = plt.colorbar(collection_bg, cax=cax)
        if not colorbar:
            cbar.remove()

        #cbar.ax.tick_params(labelsize=3 * comp_width)

    return ax, list(reversed(n_centers))
예제 #53
0
def add_fault(c, velocity, fill_fault=True, plot=False):
    "add a fault to a velocity model"

    # fault parameters

    m_range = c.fm_m_range
    x0_range = c.fm_x0_range
    y0_range = c.fm_y0_range
    y_start_range = c.fm_y_start_range
    y_shift_range = c.fm_y_shift_range

    fault_width = c.fm_fault_width
    fault_velocity = c.fm_fault_velocity

    # sample distributions

    m = np.random.uniform(m_range[0], m_range[1])
    if np.random.random() > 0.5: m *= -1

    x0, y0 = (np.random.randint(x0_range[0], x0_range[1]),
              np.random.randint(y0_range[0], y0_range[1]))
    y_start = np.random.randint(y_start_range[0], y_start_range[1])
    y_shift = -np.random.randint(y_shift_range[0], y_shift_range[1])

    y_range = (y_start, y_start + velocity.shape[1])
    if plot: print(m, (x0, y0), y_range, y_shift)

    # derived parameters
    c = y0 - m * x0  # for selecting slab masks
    delta_y = int(y_shift)  # for actually shifting the fault (rounded)
    delta_x = int(np.round(y_shift / m))

    # pad y by delta_y
    # pad x by delta_x     # both these may over-pad (for code simplicity)
    pad_x, pad_y = np.abs(delta_x), np.abs(delta_y)
    v_pad = np.pad(np.copy(velocity), [(pad_x, pad_x), (pad_y, pad_y)], 'edge')

    # get fault block masks
    slab_mask = np.zeros(v_pad.shape)
    empty_mask = np.zeros(v_pad.shape)
    reverse = False
    if np.random.random() > 0.5: reverse = True
    for xval, col in enumerate(v_pad):
        for yval, _ in enumerate(col):
            if ((m * (xval - pad_x) + c < (yval - pad_y) and reverse)
                    or (m * (xval - pad_x) + c >
                        (yval - pad_y) and not reverse)):
                if (y_range[0] < (yval - pad_y) <= y_range[1]):
                    slab_mask[xval, yval] = 1  # just fills slab
                if ((y_range[0] - pad_y) < (yval - pad_y) <= y_range[1]):
                    empty_mask[xval,
                               yval] = 1  # fills upwards to include delta_y

    # shift blocks
    slab = v_pad * slab_mask
    #order ensures no interpolation, origin is origin in original image (which is shifted to 0,0 in output)
    slab_shift = scipy.ndimage.affine_transform(slab,
                                                np.diag((1, 1)),
                                                (delta_x, delta_y),
                                                order=0)
    empty_mask_shift = scipy.ndimage.affine_transform(empty_mask,
                                                      np.diag((1, 1)),
                                                      (delta_x, delta_y),
                                                      order=0)
    v_pad_shift = v_pad * (1 - empty_mask_shift) + slab_shift

    # fill zeros, by whatever is above slab
    found = False
    fill_value = np.mean(velocity)
    for yval in np.arange(v_pad.shape[1]):
        row = slab_mask[:, yval]
        for xval, val in enumerate(row):
            if val == 1 and yval != 0:
                fill_value = v_pad[xval, yval - 1]
                found = True
                break
        if found: break

    v_pad_fill = np.copy(v_pad_shift)
    for xval, col in enumerate(v_pad_shift):
        for yval, vval in enumerate(col):
            if vval == 0:
                v_pad_fill[xval, yval] = fill_value

            # add fault block
            x_fault = ((yval - pad_y - c) / m)
            if (fill_fault and y_range[0] < (yval - pad_y) <=
                (y_range[1] + pad_y)
                    and (x_fault - fault_width <
                         (xval - pad_x) <= x_fault + fault_width)):
                v_pad_fill[xval, yval] = fault_velocity

    # crop
    v_fill = v_pad_fill[pad_x:-pad_x, pad_y:-pad_y]

    # optionally plot
    if plot:
        x = np.arange(velocity.shape[0])

        plt.figure()
        plt.imshow(velocity.T, vmin=0, vmax=3500)
        plt.colorbar()
        plt.plot(x, m * x + c)
        plt.scatter(x0, y0)
        plt.scatter((y_range[0] - c) / m, y_range[0])
        plt.scatter((y_range[1] - y_shift - c) / m, y_range[1] - y_shift)
        plt.xlim(0, velocity.shape[0])
        plt.ylim(velocity.shape[1], 0)

        x_pad = np.arange(v_pad.shape[0])

        plt.figure()
        plt.imshow(v_pad.T, vmin=0, vmax=3500)
        plt.colorbar()
        plt.plot(x_pad, m * (x_pad - pad_x) + c + pad_y)
        plt.scatter(x0 + pad_x, y0 + pad_y)
        plt.xlim(0, v_pad.shape[0])
        plt.ylim(v_pad.shape[1], 0)

        plt.figure()
        plt.imshow(slab_mask.T)
        plt.colorbar()
        plt.plot(x_pad, m * (x_pad - pad_x) + c + pad_y)
        plt.scatter(x0 + pad_x, y0 + pad_y)
        plt.xlim(0, v_pad.shape[0])
        plt.ylim(v_pad.shape[1], 0)

        plt.figure()
        plt.imshow(empty_mask.T)
        plt.colorbar()
        plt.plot(x_pad, m * (x_pad - pad_x) + c + pad_y)
        plt.scatter(x0 + pad_x, y0 + pad_y)
        plt.xlim(0, v_pad.shape[0])
        plt.ylim(v_pad.shape[1], 0)

        plt.figure()
        plt.imshow(slab_shift.T, vmin=0, vmax=3500)
        plt.colorbar()
        plt.plot(x_pad, m * (x_pad - pad_x) + c + pad_y)
        plt.scatter(x0 + pad_x, y0 + pad_y)
        plt.xlim(0, v_pad.shape[0])
        plt.ylim(v_pad.shape[1], 0)

        plt.figure()
        plt.imshow(empty_mask_shift.T)
        plt.colorbar()
        plt.plot(x_pad, m * (x_pad - pad_x) + c + pad_y)
        plt.scatter(x0 + pad_x, y0 + pad_y)
        plt.xlim(0, v_pad.shape[0])
        plt.ylim(v_pad.shape[1], 0)

        plt.figure()
        plt.imshow(v_pad_shift.T, vmin=0, vmax=3500)
        plt.colorbar()
        plt.plot(x_pad, m * (x_pad - pad_x) + c + pad_y)
        plt.scatter(x0 + pad_x, y0 + pad_y)
        plt.xlim(0, v_pad.shape[0])
        plt.ylim(v_pad.shape[1], 0)

        plt.figure()
        plt.imshow(v_pad_fill.T, vmin=0, vmax=3500)
        plt.colorbar()
        plt.plot(x_pad, m * (x_pad - pad_x) + c + pad_y)
        plt.scatter(x0 + pad_x, y0 + pad_y)
        plt.xlim(0, v_pad.shape[0])
        plt.ylim(v_pad.shape[1], 0)

        plt.figure()
        plt.imshow(v_fill.T, vmin=0, vmax=3500)
        plt.colorbar()
        plt.plot(x, m * x + c)
        plt.scatter(x0, y0)
        plt.scatter((y_range[0] - c) / m, y_range[0])
        plt.scatter((y_range[1] - y_shift - c) / m, y_range[1] - y_shift)
        plt.xlim(0, velocity.shape[0])
        plt.ylim(velocity.shape[1], 0)

    return v_fill
예제 #54
0
)
processed_dataset = processor.apply_operations(dataset=dataset)


# %%
# The plot of the simulation. Because we configured the simulator object to simulate
# spectrum per spin system, the following dataset is a CSDM object containing five
# simulations (dependent variables). Let's visualize the first dataset corresponding to
# :math:`\text{NiCl}_2\cdot 2 \text{D}_2\text{O}`.
dataset_Ni = dataset.split()[0].real

plt.figure(figsize=(4.25, 3.0))
ax = plt.subplot(projection="csdm")
cb = ax.imshow(dataset_Ni / dataset_Ni.max(), aspect="auto", cmap="gist_ncar_r")
plt.title(None)
plt.colorbar(cb)
plt.tight_layout()
plt.show()


# %%
# The plot of the simulation after signal processing.
proc_dataset_Ni = processed_dataset.split()[0].real

plt.figure(figsize=(4.25, 3.0))
ax = plt.subplot(projection="csdm")
cb = ax.imshow(
    proc_dataset_Ni / proc_dataset_Ni.max(), cmap="gist_ncar_r", aspect="auto"
)
plt.title(None)
plt.colorbar(cb)
예제 #55
0
from numpy import genfromtxt, shape
from matplotlib.pyplot import figure, pcolormesh, streamplot, savefig, colorbar

D = genfromtxt('salida.txt', delimiter=',')
D = D[:, :-1]  # Retirar ultima columna de nans
n1, n2 = shape(D)  # Contar datos

# Separar datos
n = int(n1 / 3)
P = D[:n, :]
Ex = D[n:2 * n, :]
Ey = D[2 * n:3 * n, :]
print(shape(P), shape(Ex), shape(Ey))

XY = genfromtxt('XY.txt', delimiter=',')
XY = XY[:, :-1]  # Retirar ultima columna de nans
# Separar datos
X = XY[:n, :]
Y = XY[n:2 * n, :]
print(shape(X), shape(Y))

figure()
pcolormesh(X, Y, P)
colorbar()
streamplot(X, Y, Ex, Ey, density=1.5, color='k')
savefig('placas.pdf')
예제 #56
0
BCoffset = int(xsize/20)
# replacing all boundaries with nan to get location of vortices
Usquare[0:BCoffset,:] = nan ; Usquare[:,0:BCoffset] = nan
Usquare[xsize_max-BCoffset:xsize,:] = nan;Usquare[:,ysize_max-BCoffset:ysize] = nan
Loc1_lbm = np.unravel_index(np.nanargmin(Usquare),Usquare.shape)
# finding other vortices
Usquare[Loc1_lbm[0]-offset2:Loc1_lbm[0]+offset2,Loc1_lbm[1]-offset2:Loc1_lbm[1]+offset2] = nan
Loc2_lbm = np.unravel_index(np.nanargmin(Usquare),Usquare.shape)
Usquare[Loc2_lbm[0]-offset2:Loc2_lbm[0]+offset2,Loc2_lbm[1]-offset2:Loc2_lbm[1]+offset2] = nan
Loc3_lbm = np.unravel_index(np.nanargmin(Usquare),Usquare.shape)
Usquare[Loc3_lbm[0]-offset2:Loc3_lbm[0]+offset2,Loc3_lbm[1]-offset2:Loc3_lbm[1]+offset2] = nan
Loc4_lbm = np.unravel_index(np.nanargmin(Usquare),Usquare.shape)

color1 = (np.sqrt(u_lbm[0,:,:]**2+u_lbm[1,:,:]**2)/uLB ).transpose()
strm = subplot1.streamplot(XNorm,YNorm,(u_lbm[0,:,:]).transpose(),(u_lbm[1,:,:]).transpose(), color =color1,cmap=pyplot.cm.jet)#,norm=matplotlib.colors.Normalize(vmin=0,vmax=1)) 
cbar = pyplot.colorbar(strm.lines, ax = subplot1)
subplot1.plot(Loc1_lbm[0]/xsize,(ysize_max-Loc1_lbm[1])/ysize,'mo', label='Vortex1')
subplot1.plot(Loc2_lbm[0]/xsize,(ysize_max-Loc2_lbm[1])/ysize,'mo', label='Vortex2')
subplot1.plot(Loc3_lbm[0]/xsize,(ysize_max-Loc3_lbm[1])/ysize,'mo', label='Vortex2')
subplot1.plot(Loc4_lbm[0]/xsize,(ysize_max-Loc4_lbm[1])/ysize,'mo', label='Vortex2')
subplot1.plot(X_Vor, Y_Vor,'rs', label='Ghia',alpha=1)
subplot1.set_title('Velocity Streamlines - LBM', fontsize = 23, y =1.02)
subplot1.margins(0.005) #subplot3.axis('tight')
subplot1.set_xlabel('X-position', fontsize = 20);subplot1.set_ylabel('Y-position', fontsize = 20)

color2 = (np.sqrt(u[0,:,:]**2+u[1,:,:]**2)/uLB ).transpose()
strm = subplot2.streamplot(XNorm,YNorm,(u[0,:,:]).transpose(),(u[1,:,:]).transpose(), color =color2,cmap=pyplot.cm.jet)#,norm=matplotlib.colors.Normalize(vmin=0,vmax=1)) 
cbar = pyplot.colorbar(strm.lines, ax = subplot2)
subplot2.plot(Loc1[0]/xsize,(ysize_max-Loc1[1])/ysize,'mo', label='Vortex1')
subplot2.plot(Loc2[0]/xsize,(ysize_max-Loc2[1])/ysize,'mo', label='Vortex2')
subplot2.plot(Loc3[0]/xsize,(ysize_max-Loc3[1])/ysize,'mo', label='Vortex2')
예제 #57
0
        # axs[idx_plot].scatter(y_test, y_hat, s=1.7)
        nbins = 300
        k = kde.gaussian_kde([y_test, y_hat])
        xi, yi = np.mgrid[
            y_test.min() : y_test.max() : nbins * 1j,
            y_hat.min() : y_hat.max() : nbins * 1j,
        ]
        zi = k(np.vstack([xi.flatten(), yi.flatten()]))

        im = axs[idx_plot].pcolormesh(xi, yi, zi.reshape(xi.shape), cmap="cividis")
        # e = f.colorbar(matplotlib.cm.ScalarMappable(), ax=axs[idx_plot])
        fmt = matplotlib.ticker.ScalarFormatter()
        fmt.set_scientific(True)
        fmt.set_powerlimits((-2, 4))
        plt.colorbar(im, ax=axs[idx_plot], format=fmt)

        axs[idx_plot].set_ylabel(f"Pred. {LABEL_GUIDE[data]}")
        axs[idx_plot].set_xlabel(f"Exp. {LABEL_GUIDE[data]}")
        # axs[idx_plot].grid(alpha=0.5)

    # cyp values

    y_test = []
    y_hat = []

    aucs = []

    for idx_split in range(N_FOLDS):
        y = np.load(
            os.path.join(DATA_PATH, "cyp", f"cyp_noHs_y_fold{idx_split}.npy")
예제 #58
0
print(nc)
for i in nc.variables:
    print(i, nc.variables[i].units, nc.variables[i].shape)
lons = nc.variables['lon'][:]
lats = nc.variables['lat'][:]
time = nc.variables['time'][:]
qv2m = nc.variables['qv_2m'][:]
t_units = nc.variables['time'].units
datevar = num2date(time[:], units='hours since 1970-01-01 00:00:00', calendar='standard')
print(datevar[:])
map = Basemap(projection='merc', llcrnrlon=lons[0], llcrnrlat=lats[0], urcrnrlon=lons[599], urcrnrlat=lats[698],
          resolution='i')

lon2, lat2 = np.meshgrid(lons, lats)
x, y = map(lon2, lat2)
my_cmap = plt.get_cmap('rainbow')
plt.gca().set_axis_off()
plt.subplots_adjust(top=1, bottom=0, right=1, left=0,
                    hspace=0, wspace=0)
plt.margins(0, 0)
map.pcolormesh(x, y, qv2m[0, :, :], cmap='rainbow_r')
#plt.colorbar(label="2-m Mixing Ratio") # comment out later
for b in range(0, 31):
    map.pcolormesh(x, y, qv2m[b, :, :], cmap='rainbow_r')
    #plt.title('2-m Mixing Ratio on %s' % datevar[b]) # comment out later
    cb = plt.colorbar();
    cb.remove();
    plt.draw();
    plt.savefig("qv_2m_monthly_mean_d02_2009-2018_%s.png" % b, transparent='True',
                bbox_inches='tight', pad_inches=0)
    print('saved %s' % b)
print len(R)
print len(Z)

# Plot A
#------------------------------------------------------------
plt.figure(figsize=(12, 8))

#plt.contourf(array with size x, array with size y, matrix with size x*y, Number of colors, choose a color map)
plt.contourf(R, Z, Ca, NoColors, cmap=cmap)

plt.xlim((xmin, xmax))
plt.ylim((ymin, ymax))

#plt.clim((0, 2))

plt.colorbar(format='%.1f')
# plt.colorbar()

plt.xlabel('R')
plt.ylabel('Z')
plt.title('Concentration A')

plt.savefig('ConcentrationPlots/plot_ConcentrationA_.png')
#plt.savefig('ConcentrationPlots/plot_ConcentrationA.eps')
#plt.savefig('ConcentrationPlots/plot_ConcentrationA_' + str(frame) + '.pdf')

# Plot B
#------------------------------------------------------------
plt.figure(figsize=(12, 8))
plt.contourf(R, Z, Cb, NoColors, cmap=cmap)
def zonotope_2d_plot(vertices, design=None, y=None, f=None, out_label=None, opts=None):
    """A utility for plotting (m,2) zonotopes with designs and quadrature rules.

    Parameters
    ----------
    vertices : ndarray 
        M-by-2 matrix that contains the vertices that define the zonotope
    design : ndarray, optional
        N-by-2 matrix that contains a design-of-experiments on the zonotope. The
        plot will contain the Delaunay triangulation of the points in `design` 
        and `vertices`. (default None)
    y : ndarray, optional 
        K-by-2 matrix that contains points to be plotted inside the zonotope. If
        `y` is given, then `f` must be given, too. (default None)
    f: ndarray, optional
        K-by-1 matrix that contains a color value for the associated points in 
        `y`. This is useful for plotting function values or quadrature rules 
        with the zonotope. If `f` is given, then `y` must be given, too. 
        (default None)
    out_label : str, optional 
        a label for the quantity of interest (default None)
    opts : dict, optional 
        a dictionary with some plot options (default None)

    Notes
    -----
    This function makes use of the scipy.spatial routines for plotting the
    zonotopes.
    """
    if opts == None:
        opts = plot_opts()

    # set labels for plots
    if out_label is None:
        out_label = 'Output'

    if vertices.shape[1] != 2:
        raise Exception('Zonotope vertices should be 2d.')

    if design is not None:
        if design.shape[1] != 2:
            raise Exception('Zonotope design should be 2d.')

    if y is not None:
        if y.shape[1] != 2:
            raise Exception('Zonotope design should be 2d.')

    if (y is not None and f is None) or (y is None and f is not None):
        raise Exception('You need both y and f to plot.')

    if y is not None and f is not None:
        if y.shape[0] != f.shape[0]:
            raise Exception('Lengths of y and f are not the same.')

    # get the xlim and ylim
    xmin, xmax = np.amin(vertices), np.amax(vertices)

    # make the Polygon patch for the zonotope
    ch = ConvexHull(vertices)

    # make the Delaunay triangulation
    if design is not None:
        points = np.vstack((design, vertices))
        dtri = Delaunay(points)

    fig = plt.figure(figsize=(7,7))
    ax = fig.add_subplot(111)
    fig0 = convex_hull_plot_2d(ch, ax=ax)
    for l in fig0.axes[0].get_children():
        if type(l) is Line2D:
	        l.set_linewidth(3)

    if design is not None:
        fig1 = delaunay_plot_2d(dtri, ax=ax)
        for l in fig1.axes[0].get_children():
            if type(l) is Line2D:
	        l.set_color('0.75')

    if y is not None:
        plt.scatter(y[:,0], y[:,1], c=f, s=100.0, vmin=np.min(f), vmax=np.max(f))
        plt.axes().set_aspect('equal')
        plt.title(out_label)
        plt.colorbar()

    plt.axis([1.1*xmin,1.1*xmax,1.1*xmin,1.1*xmax])
    plt.xlabel('Active variable 1')
    plt.ylabel('Active variable 2')
    show_plot(plt)
    if opts['savefigs']:
        figname = 'figs/zonotope_2d_' + out_label + opts['figtype']
        plt.savefig(figname, dpi=300, bbox_inches='tight', pad_inches=0.0)